{"title":"The effect of diameter and moisture content on biomechanical properties of four native Australian trees","authors":"Jiale Zhu, Abbas El-Zein, Guien Miao","doi":"10.1007/s11104-024-07136-1","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and Aims</h3><p>Roots of plants have been shown to be effective in reinforcing soils against slope failures. Two key mechanical properties in such reinforcement are the root’s tensile strength (TS) and elastic modulus (EM). However, knowledge on the combined effects of root moisture content (RMC) and root diameter on these properties is scarce. The study aims to quantify these relationships for root samples of four native Australian tree (<i>A. costata</i>, <i>B. integrifolia</i>, <i>E. reticulatus</i>, and <i>E. racemosa</i>).</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>A series of tensile tests were conducted and the root diameter at the fracture point and RMC were measured immediately after each test. Data were analysed using both univariate and multivariate analyses.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Both TS and EM declined with increasing diameter. Power-law expressions were found to describe the relationship between TS and diameter moderately well, but less so the one between TS and RMC. Multivariate analyses yielded a double power-law for TS versus diameter and RMC with a stronger fit than univariate ones. A weaker power-law was found between EM and these 2 variables. Of the four trees tested, <i>A. costata</i> exhibited the highest tensile strength and elastic modulus at a 1 mm diameter, while <i>B. integrifolia</i> yielded the lowest.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Considering both diameter and RMC as explanatory variables of TS and EM yield better accounts of experimental data. This work contributes to a better understanding of reinforcement capacity of trees generally, as well as the specific performance of roots of four native Australian trees.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"8 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-07136-1","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Aims
Roots of plants have been shown to be effective in reinforcing soils against slope failures. Two key mechanical properties in such reinforcement are the root’s tensile strength (TS) and elastic modulus (EM). However, knowledge on the combined effects of root moisture content (RMC) and root diameter on these properties is scarce. The study aims to quantify these relationships for root samples of four native Australian tree (A. costata, B. integrifolia, E. reticulatus, and E. racemosa).
Methods
A series of tensile tests were conducted and the root diameter at the fracture point and RMC were measured immediately after each test. Data were analysed using both univariate and multivariate analyses.
Results
Both TS and EM declined with increasing diameter. Power-law expressions were found to describe the relationship between TS and diameter moderately well, but less so the one between TS and RMC. Multivariate analyses yielded a double power-law for TS versus diameter and RMC with a stronger fit than univariate ones. A weaker power-law was found between EM and these 2 variables. Of the four trees tested, A. costata exhibited the highest tensile strength and elastic modulus at a 1 mm diameter, while B. integrifolia yielded the lowest.
Conclusion
Considering both diameter and RMC as explanatory variables of TS and EM yield better accounts of experimental data. This work contributes to a better understanding of reinforcement capacity of trees generally, as well as the specific performance of roots of four native Australian trees.
期刊介绍:
Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.