The effect of diameter and moisture content on biomechanical properties of four native Australian trees

IF 3.9 2区 农林科学 Q1 AGRONOMY
Jiale Zhu, Abbas El-Zein, Guien Miao
{"title":"The effect of diameter and moisture content on biomechanical properties of four native Australian trees","authors":"Jiale Zhu, Abbas El-Zein, Guien Miao","doi":"10.1007/s11104-024-07136-1","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and Aims</h3><p>Roots of plants have been shown to be effective in reinforcing soils against slope failures. Two key mechanical properties in such reinforcement are the root’s tensile strength (TS) and elastic modulus (EM). However, knowledge on the combined effects of root moisture content (RMC) and root diameter on these properties is scarce. The study aims to quantify these relationships for root samples of four native Australian tree (<i>A. costata</i>, <i>B. integrifolia</i>, <i>E. reticulatus</i>, and <i>E. racemosa</i>).</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>A series of tensile tests were conducted and the root diameter at the fracture point and RMC were measured immediately after each test. Data were analysed using both univariate and multivariate analyses.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Both TS and EM declined with increasing diameter. Power-law expressions were found to describe the relationship between TS and diameter moderately well, but less so the one between TS and RMC. Multivariate analyses yielded a double power-law for TS versus diameter and RMC with a stronger fit than univariate ones. A weaker power-law was found between EM and these 2 variables. Of the four trees tested, <i>A. costata</i> exhibited the highest tensile strength and elastic modulus at a 1 mm diameter, while <i>B. integrifolia</i> yielded the lowest.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Considering both diameter and RMC as explanatory variables of TS and EM yield better accounts of experimental data. This work contributes to a better understanding of reinforcement capacity of trees generally, as well as the specific performance of roots of four native Australian trees.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"8 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-07136-1","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and Aims

Roots of plants have been shown to be effective in reinforcing soils against slope failures. Two key mechanical properties in such reinforcement are the root’s tensile strength (TS) and elastic modulus (EM). However, knowledge on the combined effects of root moisture content (RMC) and root diameter on these properties is scarce. The study aims to quantify these relationships for root samples of four native Australian tree (A. costata, B. integrifolia, E. reticulatus, and E. racemosa).

Methods

A series of tensile tests were conducted and the root diameter at the fracture point and RMC were measured immediately after each test. Data were analysed using both univariate and multivariate analyses.

Results

Both TS and EM declined with increasing diameter. Power-law expressions were found to describe the relationship between TS and diameter moderately well, but less so the one between TS and RMC. Multivariate analyses yielded a double power-law for TS versus diameter and RMC with a stronger fit than univariate ones. A weaker power-law was found between EM and these 2 variables. Of the four trees tested, A. costata exhibited the highest tensile strength and elastic modulus at a 1 mm diameter, while B. integrifolia yielded the lowest.

Conclusion

Considering both diameter and RMC as explanatory variables of TS and EM yield better accounts of experimental data. This work contributes to a better understanding of reinforcement capacity of trees generally, as well as the specific performance of roots of four native Australian trees.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant and Soil
Plant and Soil 农林科学-农艺学
CiteScore
8.20
自引率
8.20%
发文量
543
审稿时长
2.5 months
期刊介绍: Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信