Conjugated Phthalocyanine-Based Mesoporous Covalent Organic Frameworks for Efficient Anodic Lithium Storage

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-12-23 DOI:10.1002/smll.202410405
Rong Jiang, Xiaoyang Wang, Qianjun Zhi, Zhixin Liu, Xiya Yang, Chunli Li, Qianqian Xu, Xiaoning Zhan, Kang Wang, Lijuan Zhang, Jianzhuang Jiang, Yongjun Feng
{"title":"Conjugated Phthalocyanine-Based Mesoporous Covalent Organic Frameworks for Efficient Anodic Lithium Storage","authors":"Rong Jiang, Xiaoyang Wang, Qianjun Zhi, Zhixin Liu, Xiya Yang, Chunli Li, Qianqian Xu, Xiaoning Zhan, Kang Wang, Lijuan Zhang, Jianzhuang Jiang, Yongjun Feng","doi":"10.1002/smll.202410405","DOIUrl":null,"url":null,"abstract":"Organic anode materials have been recognized as promising candidates for low-cost and sustainable lithium-ion batteries (LIBs), which however suffer from the inferior cycling stability and low conductivity with unsatisfactory LIBs performance. Herein, two conjugated phthalocyanine-based covalent organic frameworks (COFs), namely CoPc-Ph-COF and CoPc-3Ph-COF, are synthesized by the nucleophilic substitution reaction of hexafluorophthalocyanine cobalt (II) (CoPcF<sub>16</sub>) with 1,2,4,5-tetrahydroxybenzene and 9,10-dimethyl-2,3,6,7-tetrahydroxyanthracene, respectively. Powder X-ray diffraction and electron microscopy analysis reveal the crystalline porous structure of both COFs with a pore size of 1.6-2.4 nm, enabling facile ion transportation. Immersion experiments demonstrate the excellent stability of both COFs. <i>I–V</i> curve measurement discloses the superb conductivity of both COFs due to their fully π-conjugated frameworks. These merits, in combination with their N-rich skeleton, endow the two COFs with excellent anodic Li<sup>+</sup> storage performance in terms of high specific capacities, superb rate performance, and good cycling stability. In particular, CoPc-3Ph-COF suggests a large reversible capacity of 1086 mA h g<sup>−1</sup> at 100 mA g<sup>−1</sup>, superior to most reported organic LIBs anodes, exhibiting its promising application in high-performance LIBs.","PeriodicalId":228,"journal":{"name":"Small","volume":"201 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202410405","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Organic anode materials have been recognized as promising candidates for low-cost and sustainable lithium-ion batteries (LIBs), which however suffer from the inferior cycling stability and low conductivity with unsatisfactory LIBs performance. Herein, two conjugated phthalocyanine-based covalent organic frameworks (COFs), namely CoPc-Ph-COF and CoPc-3Ph-COF, are synthesized by the nucleophilic substitution reaction of hexafluorophthalocyanine cobalt (II) (CoPcF16) with 1,2,4,5-tetrahydroxybenzene and 9,10-dimethyl-2,3,6,7-tetrahydroxyanthracene, respectively. Powder X-ray diffraction and electron microscopy analysis reveal the crystalline porous structure of both COFs with a pore size of 1.6-2.4 nm, enabling facile ion transportation. Immersion experiments demonstrate the excellent stability of both COFs. I–V curve measurement discloses the superb conductivity of both COFs due to their fully π-conjugated frameworks. These merits, in combination with their N-rich skeleton, endow the two COFs with excellent anodic Li+ storage performance in terms of high specific capacities, superb rate performance, and good cycling stability. In particular, CoPc-3Ph-COF suggests a large reversible capacity of 1086 mA h g−1 at 100 mA g−1, superior to most reported organic LIBs anodes, exhibiting its promising application in high-performance LIBs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信