Cephalopod-Inspired MXene-Integrated Mechanochromic Cholesteric Liquid Crystal Elastomers for Visible-Infrared-Radar Multispectral Camouflage

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ling Wang, Yuan Liu, Ran Bi, Xuan Zhang, Yuanhao Chen, Cristian Valenzuela, Yanzhao Yang, Huan Liu, Le Yang, Wei Feng
{"title":"Cephalopod-Inspired MXene-Integrated Mechanochromic Cholesteric Liquid Crystal Elastomers for Visible-Infrared-Radar Multispectral Camouflage","authors":"Ling Wang, Yuan Liu, Ran Bi, Xuan Zhang, Yuanhao Chen, Cristian Valenzuela, Yanzhao Yang, Huan Liu, Le Yang, Wei Feng","doi":"10.1002/anie.202422636","DOIUrl":null,"url":null,"abstract":"Multispectral camouflage materials play a vital role in sophisticated multi-band electromagnetic (EM) applications. However, conventional single-band stealth is difficult to align with the growing demand for multi-band compatibility and intelligent adaptation. Herein, we report the design and synthesis of cephalopod-inspired MXene-integrated cholesteric liquid crystal elastomers (MXene-CLCEs) with multispectral camouflage capability, which was fabricated through in situ thiol-acrylate Michael addition and free-radical photopolymerization of CLCE precursor and isocyanate-mediated robust covalent chemical bonding of MXene nanocoating at the interface. The resulting MXene-CLCE exhibits dynamic structural color changes, tunable infrared radiation, and switchable microwave shielding across wide ranges upon mechanical stretching, with its infrared stealth and microwave shielding properties being realized through the reconfiguration of surface morphology from planar to cracked states via mechanical actuation. A visible-to-infrared camouflage octopus-patterned MXene-CLCE is demonstrated to achieve a stealth effect across the visible-infrared spectrum upon mechanical stretching. As an illustration, proof-of-concept pneumatic-driven octopus-inspired soft models are demonstrated, which enables dynamic visible-infrared camouflage and microwave shielding switching between two compatible states. The research herein can offer new perspectives on the development of bioinspired smart camouflage materials and their application in smart optical stealth, dynamic thermal management, and switchable electromagnetic devices.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"24 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202422636","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Multispectral camouflage materials play a vital role in sophisticated multi-band electromagnetic (EM) applications. However, conventional single-band stealth is difficult to align with the growing demand for multi-band compatibility and intelligent adaptation. Herein, we report the design and synthesis of cephalopod-inspired MXene-integrated cholesteric liquid crystal elastomers (MXene-CLCEs) with multispectral camouflage capability, which was fabricated through in situ thiol-acrylate Michael addition and free-radical photopolymerization of CLCE precursor and isocyanate-mediated robust covalent chemical bonding of MXene nanocoating at the interface. The resulting MXene-CLCE exhibits dynamic structural color changes, tunable infrared radiation, and switchable microwave shielding across wide ranges upon mechanical stretching, with its infrared stealth and microwave shielding properties being realized through the reconfiguration of surface morphology from planar to cracked states via mechanical actuation. A visible-to-infrared camouflage octopus-patterned MXene-CLCE is demonstrated to achieve a stealth effect across the visible-infrared spectrum upon mechanical stretching. As an illustration, proof-of-concept pneumatic-driven octopus-inspired soft models are demonstrated, which enables dynamic visible-infrared camouflage and microwave shielding switching between two compatible states. The research herein can offer new perspectives on the development of bioinspired smart camouflage materials and their application in smart optical stealth, dynamic thermal management, and switchable electromagnetic devices.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信