{"title":"Mild Focused Ultrasound-Induced Microscopic Heating of Nanoparticles Observed by Lanthanide Luminescence for Precise Sonothermal Cancer Therapy","authors":"Lingkai Meng, Sixin Xu, Qian Hu, Hao Wang, Pengrui Wang, Ruotong Li, Yifeng Zhang, Tiange Shi, Na Kong, Xingjun Zhu","doi":"10.1021/acs.nanolett.4c05175","DOIUrl":null,"url":null,"abstract":"Focused ultrasound (FUS) is a recognized tool that can be used clinically for the thermal ablation of tumors. However, excessive heat can cause side effects on the ultrasound transmission path and normal tissues around the tumor. To address the issue, this work detected for the first time the effect of microscopic heating of nanoparticles under the action of FUS through the luminescence intensity ratio (LIR) and luminescence lifetime of temperature-responsive lanthanide-doped nanoparticles. When FUS is applied to the tissue embedded with nanoparticles, the increase in the microscopic temperature of the nanoparticles synchronously monitored by LIR is more obvious than the increase in the macroscopic temperature. Based on this phenomenon, the intensity of focused ultrasound can be finely regulated to avoid overheating while ensuring a therapeutic effect. This work achieves the measurement of the microscopic heating of nanoparticles under FUS, which is of great significance for the development of sonothermal cancer therapy.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"1 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05175","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Focused ultrasound (FUS) is a recognized tool that can be used clinically for the thermal ablation of tumors. However, excessive heat can cause side effects on the ultrasound transmission path and normal tissues around the tumor. To address the issue, this work detected for the first time the effect of microscopic heating of nanoparticles under the action of FUS through the luminescence intensity ratio (LIR) and luminescence lifetime of temperature-responsive lanthanide-doped nanoparticles. When FUS is applied to the tissue embedded with nanoparticles, the increase in the microscopic temperature of the nanoparticles synchronously monitored by LIR is more obvious than the increase in the macroscopic temperature. Based on this phenomenon, the intensity of focused ultrasound can be finely regulated to avoid overheating while ensuring a therapeutic effect. This work achieves the measurement of the microscopic heating of nanoparticles under FUS, which is of great significance for the development of sonothermal cancer therapy.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.