Hyokwang Park, Hoseong Shin, Nasir Ali, Hyungyu Choi, Brian S. Y. Kim, Boseok Kang, Min Sup Choi, Won Jong Yoo
{"title":"P-Type Vertical FETs Realized by Using Fermi-Level Pinning-Free 2D Metallic Electrodes","authors":"Hyokwang Park, Hoseong Shin, Nasir Ali, Hyungyu Choi, Brian S. Y. Kim, Boseok Kang, Min Sup Choi, Won Jong Yoo","doi":"10.1021/acs.nanolett.4c05136","DOIUrl":null,"url":null,"abstract":"In two-dimensional (2D) nanomaterial electronics, vertical field-effect transistors (VFETs), where charges flow perpendicular to the channel materials, hold promise due to the ease of forming ultrashort channel lengths by utilizing the thinness of 2D materials. However, the poor performance of p-type VFET arises from the lack of a gate-field-penetrating electrode with suitable work functions, which is essential for VFET operation. This motivated us to replace graphene (work function of ∼4.5 eV) with a high-work-function electrode to achieve the desired VFET characteristics. In this study, we demonstrate that WSe<sub>2</sub>-based p-type VFETs with a high on/off ratio of ∼10<sup>5</sup> can be realized using van-der-Waals contacts formed with high-work-function 2D metals (i.e., 2H-TaS<sub>2</sub>, NbSe<sub>2</sub>, and NbS<sub>2</sub>), which form a p-type ohmic contact to the WSe<sub>2</sub> channel by suppressing Fermi-level pinning. Furthermore, we successfully fabricate a 2D metal-incorporating pseudocomplementary FET structure, demonstrating a great potential to significantly reduce the scaling factor by dense structure and vertical operation.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"53 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05136","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In two-dimensional (2D) nanomaterial electronics, vertical field-effect transistors (VFETs), where charges flow perpendicular to the channel materials, hold promise due to the ease of forming ultrashort channel lengths by utilizing the thinness of 2D materials. However, the poor performance of p-type VFET arises from the lack of a gate-field-penetrating electrode with suitable work functions, which is essential for VFET operation. This motivated us to replace graphene (work function of ∼4.5 eV) with a high-work-function electrode to achieve the desired VFET characteristics. In this study, we demonstrate that WSe2-based p-type VFETs with a high on/off ratio of ∼105 can be realized using van-der-Waals contacts formed with high-work-function 2D metals (i.e., 2H-TaS2, NbSe2, and NbS2), which form a p-type ohmic contact to the WSe2 channel by suppressing Fermi-level pinning. Furthermore, we successfully fabricate a 2D metal-incorporating pseudocomplementary FET structure, demonstrating a great potential to significantly reduce the scaling factor by dense structure and vertical operation.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.