Intrinsic Coexistence of Miscibility and Segregation in Gold–Silver Nanoalloys

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-12-23 DOI:10.1002/smll.202411151
Murilo Moreira, Emmanuel Cottancin, Michel Pellarin, Lucian Roiban, Karine Masenelli-Varlot, Daniel Ugarte, Varlei Rodrigues, Matthias Hillenkamp
{"title":"Intrinsic Coexistence of Miscibility and Segregation in Gold–Silver Nanoalloys","authors":"Murilo Moreira, Emmanuel Cottancin, Michel Pellarin, Lucian Roiban, Karine Masenelli-Varlot, Daniel Ugarte, Varlei Rodrigues, Matthias Hillenkamp","doi":"10.1002/smll.202411151","DOIUrl":null,"url":null,"abstract":"Bimetallic nanoparticles are used in numerous applications in catalysis, plasmonics or fuel cell technology. The addition of the second metal to the nanoparticles allows enhancing and fine-tuning their properties by choosing their composition, size, shape and environment. However, the crucial additional parameter of chemical structure within the particle is difficult to predict and access experimentally, even though segregated core–shell structures and random alloys can have drastically different physicochemical properties. This is highlighted by the vast literature on the most studied bimetallic system, gold-silver, for which the controversy on whether gold and silver are miscible on the nanoscale or segregate persists. Here, these contradictions are solved by determining quantitatively the coexistence of an alloyed core and a 1–2 nm thick shell with gradual silver enrichment as the chemical ground state structure. Chemical reactions with the environment and meta-stable structures are furthermore identified as responsible for the contradictions in the literature. This method is applicable to other multi-metallic systems, provides benchmark input for theoretical models, and forms the basis for studying chemical rearrangements under reactive conditions in catalysis.","PeriodicalId":228,"journal":{"name":"Small","volume":"64 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202411151","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bimetallic nanoparticles are used in numerous applications in catalysis, plasmonics or fuel cell technology. The addition of the second metal to the nanoparticles allows enhancing and fine-tuning their properties by choosing their composition, size, shape and environment. However, the crucial additional parameter of chemical structure within the particle is difficult to predict and access experimentally, even though segregated core–shell structures and random alloys can have drastically different physicochemical properties. This is highlighted by the vast literature on the most studied bimetallic system, gold-silver, for which the controversy on whether gold and silver are miscible on the nanoscale or segregate persists. Here, these contradictions are solved by determining quantitatively the coexistence of an alloyed core and a 1–2 nm thick shell with gradual silver enrichment as the chemical ground state structure. Chemical reactions with the environment and meta-stable structures are furthermore identified as responsible for the contradictions in the literature. This method is applicable to other multi-metallic systems, provides benchmark input for theoretical models, and forms the basis for studying chemical rearrangements under reactive conditions in catalysis.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信