The Mitochondria-Targeted Micelle Inhibits Alzheimer's Disease Progression by Alleviating Neuronal Mitochondrial Dysfunction and Neuroinflammation

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-12-23 DOI:10.1002/smll.202408581
Wenqiang Qian, Daozhou Liu, Jie Liu, Miao Liu, Qifeng Ji, Bangle Zhang, Zhifu Yang, Ying Cheng, Siyuan Zhou
{"title":"The Mitochondria-Targeted Micelle Inhibits Alzheimer's Disease Progression by Alleviating Neuronal Mitochondrial Dysfunction and Neuroinflammation","authors":"Wenqiang Qian, Daozhou Liu, Jie Liu, Miao Liu, Qifeng Ji, Bangle Zhang, Zhifu Yang, Ying Cheng, Siyuan Zhou","doi":"10.1002/smll.202408581","DOIUrl":null,"url":null,"abstract":"Mitochondrial dysfunction plays an important role in neuroinflammation and cognitive impairment in Alzheimer's disease (AD). Herein, this work designs a mitochondria-targeted micelle CsA-TK-SS-31 (CTS) to block the progression of AD by simultaneously alleviating mitochondrial dysfunction in microglia and neurons. The mitochondria-targeted peptide SS-31 drives cyclosporin A (CsA) to penetrate the blood-brain barrier (BBB) and delivers CsA to mitochondria of microglia and neurons in the brains of 5 × FAD mice. Under the high level of reactive oxygen species (ROS) environment in damaged mitochondria of microglia and neurons, the linker (thioketal, TK) between CsA and SS-31 is broken and CsA and SS-31 are released while consuming ROS in the microenvironment. The released CsA and SS-31 synergistically restore the mitochondrial membrane potential and the balance between the fission and fusion of mitochondria, which subsequently protect neurons from apoptosis and reduce the activation of microglia in the brains of 5 × FAD mice. Ultimately, the neuroinflammation and cognitive impairment of 5 × FAD mice are ameliorated. This research provides a synergistic treatment strategy for AD through alleviating mitochondrial dysfunction to reduce neuroinflammation and restore the function of neurons simultaneously.","PeriodicalId":228,"journal":{"name":"Small","volume":"14 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202408581","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mitochondrial dysfunction plays an important role in neuroinflammation and cognitive impairment in Alzheimer's disease (AD). Herein, this work designs a mitochondria-targeted micelle CsA-TK-SS-31 (CTS) to block the progression of AD by simultaneously alleviating mitochondrial dysfunction in microglia and neurons. The mitochondria-targeted peptide SS-31 drives cyclosporin A (CsA) to penetrate the blood-brain barrier (BBB) and delivers CsA to mitochondria of microglia and neurons in the brains of 5 × FAD mice. Under the high level of reactive oxygen species (ROS) environment in damaged mitochondria of microglia and neurons, the linker (thioketal, TK) between CsA and SS-31 is broken and CsA and SS-31 are released while consuming ROS in the microenvironment. The released CsA and SS-31 synergistically restore the mitochondrial membrane potential and the balance between the fission and fusion of mitochondria, which subsequently protect neurons from apoptosis and reduce the activation of microglia in the brains of 5 × FAD mice. Ultimately, the neuroinflammation and cognitive impairment of 5 × FAD mice are ameliorated. This research provides a synergistic treatment strategy for AD through alleviating mitochondrial dysfunction to reduce neuroinflammation and restore the function of neurons simultaneously.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信