Polymer Films' Residual Stress Attenuation from the Supramolecular Complexation with Ultra-Small Nanoparticles for High Resolution Nanoimprint Lithography

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiadong Chen, Shenglin Yao, Bin Wang, Qiang Yu, Binghui Xue, Panchao Yin
{"title":"Polymer Films' Residual Stress Attenuation from the Supramolecular Complexation with Ultra-Small Nanoparticles for High Resolution Nanoimprint Lithography","authors":"Jiadong Chen, Shenglin Yao, Bin Wang, Qiang Yu, Binghui Xue, Panchao Yin","doi":"10.1002/anie.202416759","DOIUrl":null,"url":null,"abstract":"Nanoimprint lithography (NIL) has been broadly applied in the fabrication of nano-patterned polymer films for cost-efficiency and high through-put; however, the intrinsic tradeoff between mechanical strength and residual stress of polymer films significantly limits the NIL resolution while the harsh processing conditions limit its versatile applications to different substrates. Herein, 1 nm metal oxide cluster, phosphotungstic acid (PTA), is used to complexed with polyvinyl alcohol (PVA) for high-resolution NIL that can be operated at large-scale and mild conditions. The ultra-small size of PTA enables dense supramolecular interaction with PVA for the diminished crystallinity and accelerated chain dynamics that help relax the residual stress during film casting. Meanwhile, the PTAs serve as supramolecular crosslinkers for the increased modulus of the films (ca. 2 GPa), providing promising dimensional stability required for high-resolution NIL. Simple casting the aqueous blend on a master mold successfully gives a residual stress-free film with sub-2 nm resolution at wafer scale (> 100 cm2). The mild processing at ambient condition permits broad NIL applications to diverse substrates, e.g., integrated circuit chips, compact disc, PET nano grating and even delicate bio-surfaces.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"2 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202416759","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanoimprint lithography (NIL) has been broadly applied in the fabrication of nano-patterned polymer films for cost-efficiency and high through-put; however, the intrinsic tradeoff between mechanical strength and residual stress of polymer films significantly limits the NIL resolution while the harsh processing conditions limit its versatile applications to different substrates. Herein, 1 nm metal oxide cluster, phosphotungstic acid (PTA), is used to complexed with polyvinyl alcohol (PVA) for high-resolution NIL that can be operated at large-scale and mild conditions. The ultra-small size of PTA enables dense supramolecular interaction with PVA for the diminished crystallinity and accelerated chain dynamics that help relax the residual stress during film casting. Meanwhile, the PTAs serve as supramolecular crosslinkers for the increased modulus of the films (ca. 2 GPa), providing promising dimensional stability required for high-resolution NIL. Simple casting the aqueous blend on a master mold successfully gives a residual stress-free film with sub-2 nm resolution at wafer scale (> 100 cm2). The mild processing at ambient condition permits broad NIL applications to diverse substrates, e.g., integrated circuit chips, compact disc, PET nano grating and even delicate bio-surfaces.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信