Air-Mediated Biomimetic Synthesis of Polyhydroxyalkanoate with C4 Diol

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Huilin Xie, Kaibin Zhong, Shihao Niu, Xiaoxu Li, Zexu Hu, Guang Xiao, Yifu Huang, Hongjie Zhang, Yuan Liu, Hefeng Zhang, Qiuquan Cai
{"title":"Air-Mediated Biomimetic Synthesis of Polyhydroxyalkanoate with C4 Diol","authors":"Huilin Xie, Kaibin Zhong, Shihao Niu, Xiaoxu Li, Zexu Hu, Guang Xiao, Yifu Huang, Hongjie Zhang, Yuan Liu, Hefeng Zhang, Qiuquan Cai","doi":"10.1002/anie.202417660","DOIUrl":null,"url":null,"abstract":"Poly(4-hydroxybutyrate) (P4HB) is a high-performance, well-recyclable, and biodegradable polyhydroxyalkanoate (PHA). However, conventional bioproduction of homopolymeric P4HB involves complex and costly processes with C4 feedstocks, particularly 1,4-butanediol (BDO), and enzyme-coenzyme systems in genetically engineered bacteria. An alternative extracellular chemical route utilizing aerial oxidation of BDO offers cost and energy benefits but struggle with conversion efficiency. Inspired by efficient intracellular oxidation of primary alcohols, we propose a ruthenium-phosphine synergistic catalytic system that mimics enzyme-coenzyme functionality. This system effectively catalyzed the air-mediated, solvent-free oxidation of BDO to produce γ-butyrolactone (γ-BL) and oligomeric P4HB, with a space-time yield (10.37 g [γ-BL unit] g-1 catalyst h-1) surpassing the values (<5.5) of previous approaches. The oligomer-containing products were reversibly converted to γ-BL and then to P4HB (28.9 kDa) via ring-opening polymerization, exceeding reported values (<16 kDa). This study provides the potential for large-scale synthesis of high-value PHAs from diverse non-grain-based diols, offering economic and environmental advantages.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"53 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202417660","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Poly(4-hydroxybutyrate) (P4HB) is a high-performance, well-recyclable, and biodegradable polyhydroxyalkanoate (PHA). However, conventional bioproduction of homopolymeric P4HB involves complex and costly processes with C4 feedstocks, particularly 1,4-butanediol (BDO), and enzyme-coenzyme systems in genetically engineered bacteria. An alternative extracellular chemical route utilizing aerial oxidation of BDO offers cost and energy benefits but struggle with conversion efficiency. Inspired by efficient intracellular oxidation of primary alcohols, we propose a ruthenium-phosphine synergistic catalytic system that mimics enzyme-coenzyme functionality. This system effectively catalyzed the air-mediated, solvent-free oxidation of BDO to produce γ-butyrolactone (γ-BL) and oligomeric P4HB, with a space-time yield (10.37 g [γ-BL unit] g-1 catalyst h-1) surpassing the values (<5.5) of previous approaches. The oligomer-containing products were reversibly converted to γ-BL and then to P4HB (28.9 kDa) via ring-opening polymerization, exceeding reported values (<16 kDa). This study provides the potential for large-scale synthesis of high-value PHAs from diverse non-grain-based diols, offering economic and environmental advantages.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信