{"title":"On a new mechanism of the emergence of spatial distributions in biological models","authors":"B. Kazmierczak, V. Volpert","doi":"10.1016/j.aml.2024.109427","DOIUrl":null,"url":null,"abstract":"Non-uniform distributions of various biological factors can be essential for tissue growth control, morphogenesis or tumor growth. The first model describing the emergence of such distributions was suggested by A. Turing for the explanation of cell differentiation in a growing embryo. In this model, diffusion-driven instability of the homogeneous in space solution appears due to the interaction of two or more morphogens described by a reaction–diffusion system of equations. In this work we suggest another mechanism of the emergence of spatial distributions in biological tissues based on local cell communication and global inhibition, and described by a nonlocal reaction–diffusion equation. Instability of the homogeneous in space solution leads to the emergence of stationary pulses and not of periodic solutions as in the case of Turing instability.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"281 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.aml.2024.109427","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Non-uniform distributions of various biological factors can be essential for tissue growth control, morphogenesis or tumor growth. The first model describing the emergence of such distributions was suggested by A. Turing for the explanation of cell differentiation in a growing embryo. In this model, diffusion-driven instability of the homogeneous in space solution appears due to the interaction of two or more morphogens described by a reaction–diffusion system of equations. In this work we suggest another mechanism of the emergence of spatial distributions in biological tissues based on local cell communication and global inhibition, and described by a nonlocal reaction–diffusion equation. Instability of the homogeneous in space solution leads to the emergence of stationary pulses and not of periodic solutions as in the case of Turing instability.
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.