{"title":"Normalized solutions to HLS lower critical Choquard equation with inverse-power potential and square-root-type nonlinearity","authors":"Jianlun Liu, Hong-Rui Sun, Ziheng Zhang","doi":"10.1016/j.aml.2024.109430","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the HLS lower critical Choquard equation with inverse-power potential and square-root-type nonlinearity. After giving a novel proof of subadditivity of the constraint minimizing problem and establishing the Brézis–Lieb lemma for square-root-type nonlinearity, we not only prove the existence of normalized solutions but also give its energy estimate.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"113 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.aml.2024.109430","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is concerned with the HLS lower critical Choquard equation with inverse-power potential and square-root-type nonlinearity. After giving a novel proof of subadditivity of the constraint minimizing problem and establishing the Brézis–Lieb lemma for square-root-type nonlinearity, we not only prove the existence of normalized solutions but also give its energy estimate.
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.