Compositionally Tunable Magneto-optical Properties of Lead-Free Halide Perovskite Nanocrystals

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL
Lin Feng, I-Hsuan Yeh, Pavle V. Radovanovic
{"title":"Compositionally Tunable Magneto-optical Properties of Lead-Free Halide Perovskite Nanocrystals","authors":"Lin Feng, I-Hsuan Yeh, Pavle V. Radovanovic","doi":"10.1021/acs.jpclett.4c02966","DOIUrl":null,"url":null,"abstract":"Inorganic lead-free metal halide perovskites have garnered much attention as low-toxicity alternatives to lead halide perovskites for luminescence and photovoltaic applications. However, the electronic structure and properties of these materials, including the composition dependence of the band structure, spin–orbit coupling, and Zeeman effects, remain poorly understood. Here, we investigated vacancy-ordered Cs<sub>3</sub>Bi<sub>2</sub>X<sub>9</sub> (X= Cl, Br) perovskite nanocrystals using magnetic circular dichroism spectroscopy. Our results indicate that the excitonic spectra are predominantly composed of direct and indirect band gap transitions and that the Zeeman splitting energy of the direct exciton increases from 0.50 to 0.63 meV at 7 T by substituting Br for Cl. Comparison with analogous results for Cs<sub>2</sub>AgBiCl<sub>6</sub> nanocrystals, obtained by cation substitution, suggests an important effect of charge distribution within electronic bands on the excitonic Zeeman splitting. This work demonstrates that the magneto-optical properties of these materials can be effectively manipulated via chemical composition, suggesting promising applications in photonics, spintronics, and optoelectronics.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"1 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c02966","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Inorganic lead-free metal halide perovskites have garnered much attention as low-toxicity alternatives to lead halide perovskites for luminescence and photovoltaic applications. However, the electronic structure and properties of these materials, including the composition dependence of the band structure, spin–orbit coupling, and Zeeman effects, remain poorly understood. Here, we investigated vacancy-ordered Cs3Bi2X9 (X= Cl, Br) perovskite nanocrystals using magnetic circular dichroism spectroscopy. Our results indicate that the excitonic spectra are predominantly composed of direct and indirect band gap transitions and that the Zeeman splitting energy of the direct exciton increases from 0.50 to 0.63 meV at 7 T by substituting Br for Cl. Comparison with analogous results for Cs2AgBiCl6 nanocrystals, obtained by cation substitution, suggests an important effect of charge distribution within electronic bands on the excitonic Zeeman splitting. This work demonstrates that the magneto-optical properties of these materials can be effectively manipulated via chemical composition, suggesting promising applications in photonics, spintronics, and optoelectronics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信