Jiasong Lin, Zhen Wang, Qinghong Lin, Jiayu Sun, Xuan Guo, Yue Wang, Liangxu Lin, Yi Zhao, Yang Liu, Deli Li, Fushan Li
{"title":"PbS Quantum Dot-Based Optoelectronic Memristors toward Multi-Task Reservoir Computing","authors":"Jiasong Lin, Zhen Wang, Qinghong Lin, Jiayu Sun, Xuan Guo, Yue Wang, Liangxu Lin, Yi Zhao, Yang Liu, Deli Li, Fushan Li","doi":"10.1021/acs.jpclett.4c03350","DOIUrl":null,"url":null,"abstract":"The rise of big data and the internet of things has driven the demand for multimodal sensing and high-efficiency low-latency processing. Inspired by the human sensory system, we present a multifunctional optoelectronic-memristor-based reservoir computing (OM-RC) system by utilizing a CuSCN/PbS quantum dots (QDs) heterojunction. The OM-RC system exhibits volatile and nonlinear responses to electrical signals and wide-spectrum optical stimuli covering ultraviolet, visible, and near-infrared (NIR) regions, enabling multitask processing of dynamic signals. The OM-RC system accurately performs health monitoring through dynamic electroencephalogram and electrocardiogram signal analysis and achieves object and traffic trajectory recognition for intelligent driving under challenging conditions like foggy environments. By collaboratively using the NIR perception and trajectory recognition, we develop a human–computer interaction authentication system that integrates finger veins and motion behaviors of humans, significantly enhancing the security of traditional fingerprint anticounterfeiting systems. This work demonstrates the potential of QD-based optoelectronic-memristor for multitask in-sensor processing applications.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"14 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c03350","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The rise of big data and the internet of things has driven the demand for multimodal sensing and high-efficiency low-latency processing. Inspired by the human sensory system, we present a multifunctional optoelectronic-memristor-based reservoir computing (OM-RC) system by utilizing a CuSCN/PbS quantum dots (QDs) heterojunction. The OM-RC system exhibits volatile and nonlinear responses to electrical signals and wide-spectrum optical stimuli covering ultraviolet, visible, and near-infrared (NIR) regions, enabling multitask processing of dynamic signals. The OM-RC system accurately performs health monitoring through dynamic electroencephalogram and electrocardiogram signal analysis and achieves object and traffic trajectory recognition for intelligent driving under challenging conditions like foggy environments. By collaboratively using the NIR perception and trajectory recognition, we develop a human–computer interaction authentication system that integrates finger veins and motion behaviors of humans, significantly enhancing the security of traditional fingerprint anticounterfeiting systems. This work demonstrates the potential of QD-based optoelectronic-memristor for multitask in-sensor processing applications.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.