Yuval Avivi, Juan Julian Santoyo-Flores, Tim Schleif, Sebastian Kozuch
{"title":"Cryogenic Rearrangements of Spiroheptadiyl: Light- or Heavy-Atom Quantum Tunneling?","authors":"Yuval Avivi, Juan Julian Santoyo-Flores, Tim Schleif, Sebastian Kozuch","doi":"10.1021/acs.jpclett.4c02843","DOIUrl":null,"url":null,"abstract":"Triplet 1,4-spiro[2.4]heptadiyl (<b>SHD</b>) has been shown experimentally to undergo rapid ring-opening and subsequent 1,2-hydrogen shift upon generation via photolysis of a diazene precursor at cryogenic temperatures. Modern computational tools elucidate the potential energy surface and kinetics behind this cascade reaction, disproving the earlier hypothesized mechanism invoking hot molecule effects in the first ring-opening step and tunneling in the second hydrogen transfer step. Instead, our results assign the <b>SHD</b> instability to heavy-atom tunneling and a subsequent photochemical hydrogen shift. This essentially is the opposite of the originally proposed mechanism. This case study thus addresses common misconceptions about the fundamental principles of tunneling involving hydrogen or carbon.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"32 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c02843","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Triplet 1,4-spiro[2.4]heptadiyl (SHD) has been shown experimentally to undergo rapid ring-opening and subsequent 1,2-hydrogen shift upon generation via photolysis of a diazene precursor at cryogenic temperatures. Modern computational tools elucidate the potential energy surface and kinetics behind this cascade reaction, disproving the earlier hypothesized mechanism invoking hot molecule effects in the first ring-opening step and tunneling in the second hydrogen transfer step. Instead, our results assign the SHD instability to heavy-atom tunneling and a subsequent photochemical hydrogen shift. This essentially is the opposite of the originally proposed mechanism. This case study thus addresses common misconceptions about the fundamental principles of tunneling involving hydrogen or carbon.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.