Matti Ala-Lahti, Tuija I. Pulkkinen, Austin Brenner, Timothy Keebler, Qusai Al Shidi, Shannon Hill, Daniel Welling
{"title":"The Impact of Solar Wind Magnetic Field Fluctuations on the Magnetospheric Energetics","authors":"Matti Ala-Lahti, Tuija I. Pulkkinen, Austin Brenner, Timothy Keebler, Qusai Al Shidi, Shannon Hill, Daniel Welling","doi":"10.1029/2024GL112922","DOIUrl":null,"url":null,"abstract":"<p>Solar wind drives magnetospheric dynamics through coupling with the geospace system at the magnetopause. While upstream fluctuations correlate with geomagnetic activity, their impact on the magnetopause energy transfer is an open question. In this study, we examine three-dimensional global magnetospheric simulations using the Geospace configuration of the Space Weather Modeling Framework. We examine the effects of solar wind fluctuations during a substorm event by running the model with four different driving conditions that vary in fluctuation frequency spectrum. We demonstrate that upstream fluctuations intensify the energy exchange at the magnetopause increasing both energy flux into and out of the system. The increased energy input is reflected in ground magnetic indices. Moreover, the fluctuations impact the magnetopause dynamics by regulating the energy exchange between the polar caps and lobes and energy transport within the magnetotail neutral sheet.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"51 24","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL112922","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL112922","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Solar wind drives magnetospheric dynamics through coupling with the geospace system at the magnetopause. While upstream fluctuations correlate with geomagnetic activity, their impact on the magnetopause energy transfer is an open question. In this study, we examine three-dimensional global magnetospheric simulations using the Geospace configuration of the Space Weather Modeling Framework. We examine the effects of solar wind fluctuations during a substorm event by running the model with four different driving conditions that vary in fluctuation frequency spectrum. We demonstrate that upstream fluctuations intensify the energy exchange at the magnetopause increasing both energy flux into and out of the system. The increased energy input is reflected in ground magnetic indices. Moreover, the fluctuations impact the magnetopause dynamics by regulating the energy exchange between the polar caps and lobes and energy transport within the magnetotail neutral sheet.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.