Schottky Defects Suppress Nonradiative Recombination in CH3NH3PbI3 through Charge Localization

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL
Lu Qiao, Andrey S. Vasenko, Evgueni V. Chulkov, Run Long
{"title":"Schottky Defects Suppress Nonradiative Recombination in CH3NH3PbI3 through Charge Localization","authors":"Lu Qiao, Andrey S. Vasenko, Evgueni V. Chulkov, Run Long","doi":"10.1021/acs.jpclett.4c03313","DOIUrl":null,"url":null,"abstract":"Hybrid lead halide perovskites are promising materials for photovoltaic applications due to their exceptional optoelectronic properties. Here, we investigate the impact of Schottky defects─specifically PbI<sub>2</sub>(V<sub>PbI<sub>2</sub></sub>) and CH<sub>3</sub>NH<sub>3</sub>I (V<sub>MAI</sub>) vacancies─on nonradiative recombination in CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> using time-dependent density functional theory and nonadiabatic (NA) molecular dynamics. Our results reveal that Schottky defects do not alter the fundamental bandgap or introduce trap states but instead distort the surrounding lattice, localizing the hole distribution. This reduces the spatial overlap of electron and hole wave functions, weakening NA coupling and increasing intensitieis of high-intensity phonon modes that accelerate dephasing. Consequently, nonradiative recombination lifetimes extend to 2.1 and 2.6 ns for V<sub>PbI<sub>2</sub></sub> and V<sub>MAI</sub>, respectively─over double that of pristine CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>. This work demonstrates the potential of Schottky defects to enhance perovskite solar cell performance by suppressing nonradiative recombination.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"13 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c03313","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hybrid lead halide perovskites are promising materials for photovoltaic applications due to their exceptional optoelectronic properties. Here, we investigate the impact of Schottky defects─specifically PbI2(VPbI2) and CH3NH3I (VMAI) vacancies─on nonradiative recombination in CH3NH3PbI3 using time-dependent density functional theory and nonadiabatic (NA) molecular dynamics. Our results reveal that Schottky defects do not alter the fundamental bandgap or introduce trap states but instead distort the surrounding lattice, localizing the hole distribution. This reduces the spatial overlap of electron and hole wave functions, weakening NA coupling and increasing intensitieis of high-intensity phonon modes that accelerate dephasing. Consequently, nonradiative recombination lifetimes extend to 2.1 and 2.6 ns for VPbI2 and VMAI, respectively─over double that of pristine CH3NH3PbI3. This work demonstrates the potential of Schottky defects to enhance perovskite solar cell performance by suppressing nonradiative recombination.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信