Xiao Huang, Ilia Kevlishvili, Stephen L. Craig, Heather J. Kulik
{"title":"Force-Activated Spin-Crossover in Fe2+ and Co2+ Transition Metal Mechanophores","authors":"Xiao Huang, Ilia Kevlishvili, Stephen L. Craig, Heather J. Kulik","doi":"10.1021/acs.inorgchem.4c04732","DOIUrl":null,"url":null,"abstract":"Transition metal mechanophores exhibiting force-activated spin-crossover are attractive design targets, yet large-scale discovery of them has not been pursued due in large part to the time-consuming nature of trial-and-error experiments. Instead, we leverage density functional theory (DFT) and external force explicitly included (EFEI) modeling to study a set of 395 feasible Fe<sup>2+</sup> and Co<sup>2+</sup> mechanophore candidates with tridentate ligands that we curate from the Cambridge Structural Database. Among nitrogen-coordinating low-spin complexes, we observe the prevalence of spin crossover at moderate force, and we identify 155 Fe<sup>2+</sup> and Co<sup>2+</sup> spin-crossover mechanophores and derive their threshold force for low-spin to high-spin transition (<i>F</i><sub>SCO</sub>). The calculations reveal strong correlations of <i>F</i><sub>SCO</sub> with spin-splitting energies and coordination bond lengths, facilitating rapid prediction of <i>F</i><sub>SCO</sub> using force-free DFT calculations. Then, among all Fe<sup>2+</sup> and Co<sup>2+</sup> spin-crossover mechanophores, we further identity 11 mechanophores that combine labile spin-crossover and good mechanical robustness that are thus predicted to be the most versatile for force-probing applications. We discover two classes of <i>mer-</i>symmetric complexes comprising specific heteroaromatic rings within extended π-conjugation that give rise to Fe<sup>2+</sup> mechanophores with these characteristics. We expect the set of spin-crossover mechanophores, the design principles, and the computational approach to be useful in guiding the high-throughput discovery of transition metal mechanophores with diverse functionalities and broad applications, including mechanically activated catalysis.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"61 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.4c04732","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Transition metal mechanophores exhibiting force-activated spin-crossover are attractive design targets, yet large-scale discovery of them has not been pursued due in large part to the time-consuming nature of trial-and-error experiments. Instead, we leverage density functional theory (DFT) and external force explicitly included (EFEI) modeling to study a set of 395 feasible Fe2+ and Co2+ mechanophore candidates with tridentate ligands that we curate from the Cambridge Structural Database. Among nitrogen-coordinating low-spin complexes, we observe the prevalence of spin crossover at moderate force, and we identify 155 Fe2+ and Co2+ spin-crossover mechanophores and derive their threshold force for low-spin to high-spin transition (FSCO). The calculations reveal strong correlations of FSCO with spin-splitting energies and coordination bond lengths, facilitating rapid prediction of FSCO using force-free DFT calculations. Then, among all Fe2+ and Co2+ spin-crossover mechanophores, we further identity 11 mechanophores that combine labile spin-crossover and good mechanical robustness that are thus predicted to be the most versatile for force-probing applications. We discover two classes of mer-symmetric complexes comprising specific heteroaromatic rings within extended π-conjugation that give rise to Fe2+ mechanophores with these characteristics. We expect the set of spin-crossover mechanophores, the design principles, and the computational approach to be useful in guiding the high-throughput discovery of transition metal mechanophores with diverse functionalities and broad applications, including mechanically activated catalysis.
期刊介绍:
Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.