April E. Reside, Josie Carwardine, Michelle Ward, Chuanji Yong, Ruben Venegas Li, Andrew Rogers, Brendan A. Wintle, Jennifer Silcock, John Woinarski, Mark Lintermans, Gary Taylor, Anna F. V. Pintor, James E. M. Watson
{"title":"The cost of recovering Australia’s threatened species","authors":"April E. Reside, Josie Carwardine, Michelle Ward, Chuanji Yong, Ruben Venegas Li, Andrew Rogers, Brendan A. Wintle, Jennifer Silcock, John Woinarski, Mark Lintermans, Gary Taylor, Anna F. V. Pintor, James E. M. Watson","doi":"10.1038/s41559-024-02617-z","DOIUrl":null,"url":null,"abstract":"<p>Accounting for the cost of repairing the degradation of Earth’s biosphere is critical to guide conservation and sustainable development decisions. Yet the costs of repairing nature through the recovery of a continental suite of threatened species across their range have never been calculated. We estimated the cost of in situ recovery of nationally listed terrestrial and freshwater threatened species (<i>n</i> = 1,657) across the megadiverse continent of Australia by combining the spatially explicit costs of all strategies required to address species-specific threats. Individual species recovery required up to 12 strategies (mean 2.3), predominantly habitat retention and restoration, and the management of fire and invasive species. The estimated costs of maximizing threatened species recovery across Australia varied from AU$0–$12,626 per ha, depending on the species, threats and context of each location. The total cost of implementing all strategies to recover threatened species in their in situ habitat across Australia summed to an estimated AU$583 billion per year, with management of invasive weeds making up 81% of the total cost. This figure, at 25% of Australia’s GDP, does not represent a realistic biodiversity conservation budget, but needs to be accounted for when weighing up decisions that lead to further costly degradation of Australia’s natural heritage.</p>","PeriodicalId":18835,"journal":{"name":"Nature ecology & evolution","volume":"24 1","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature ecology & evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41559-024-02617-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Accounting for the cost of repairing the degradation of Earth’s biosphere is critical to guide conservation and sustainable development decisions. Yet the costs of repairing nature through the recovery of a continental suite of threatened species across their range have never been calculated. We estimated the cost of in situ recovery of nationally listed terrestrial and freshwater threatened species (n = 1,657) across the megadiverse continent of Australia by combining the spatially explicit costs of all strategies required to address species-specific threats. Individual species recovery required up to 12 strategies (mean 2.3), predominantly habitat retention and restoration, and the management of fire and invasive species. The estimated costs of maximizing threatened species recovery across Australia varied from AU$0–$12,626 per ha, depending on the species, threats and context of each location. The total cost of implementing all strategies to recover threatened species in their in situ habitat across Australia summed to an estimated AU$583 billion per year, with management of invasive weeds making up 81% of the total cost. This figure, at 25% of Australia’s GDP, does not represent a realistic biodiversity conservation budget, but needs to be accounted for when weighing up decisions that lead to further costly degradation of Australia’s natural heritage.
Nature ecology & evolutionAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
22.20
自引率
2.40%
发文量
282
期刊介绍:
Nature Ecology & Evolution is interested in the full spectrum of ecological and evolutionary biology, encompassing approaches at the molecular, organismal, population, community and ecosystem levels, as well as relevant parts of the social sciences. Nature Ecology & Evolution provides a place where all researchers and policymakers interested in all aspects of life's diversity can come together to learn about the most accomplished and significant advances in the field and to discuss topical issues. An online-only monthly journal, our broad scope ensures that the research published reaches the widest possible audience of scientists.