Renal Clearable Chiral Manganese Oxide Supraparticles for In Vivo Detection of Metalloproteinase‐9 in Early Cancer Diagnosis

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hongyu Zhang, Panpan Chen, Wenxiong Shi, Aihua Qu, Maozhong Sun, Hua Kuang
{"title":"Renal Clearable Chiral Manganese Oxide Supraparticles for In Vivo Detection of Metalloproteinase‐9 in Early Cancer Diagnosis","authors":"Hongyu Zhang, Panpan Chen, Wenxiong Shi, Aihua Qu, Maozhong Sun, Hua Kuang","doi":"10.1002/adma.202415656","DOIUrl":null,"url":null,"abstract":"In this study, polypeptide TGGGPLGVARGKGGC‐induced chiral manganese dioxide supraparticles (MnO<jats:sub>2</jats:sub> SPs) are prepared for sensitive quantification of matrix metalloproteinase‐9 (MMP‐9) in vitro and in vivo. The results show that <jats:italic>L</jats:italic>‐type manganese dioxide supraparticles (<jats:italic>L</jats:italic>‐MnO<jats:sub>2</jats:sub> SPs) exhibited twice the affinity for the cancer cell membrane receptor CD47 (cluster of differentiation, integrin‐associated protein) than <jats:italic>D</jats:italic>‐type manganese dioxide supraparticles (<jats:italic>D</jats:italic>‐MnO<jats:sub>2</jats:sub> SPs) to accumulate at the tumor site after surface modification of the internalizing arginine‐glycine‐aspartic acid (iRGD) ligand, specifically reacting with the MMP‐9, disassembling into ultrasmall nanoparticles (NPs), and efficiently underwent renal clearance. Furthermore, <jats:italic>L</jats:italic>‐MnO<jats:sub>2</jats:sub> facilitates the quantification of MMP‐9 in mouse tumor xenografts, as demonstrated by circular dichroism (CD) and magnetic resonance imaging (MRI) within 2 h. A strong linear relationship is observed between MMP‐9 concentration and both CD and MRI intensity, ranging from 0.01 to 10 ng mL<jats:sup>−1</jats:sup>. The corresponding limits of detection (LOD) are 0.0054 ng mL<jats:sup>−1</jats:sup> for CD and 0.0062 ng mL<jats:sup>−1</jats:sup> for MRI, respectively. hese SPs provide a new approach for exploring chiral advanced biosensors for early diagnosis of cancer.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"111 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202415656","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, polypeptide TGGGPLGVARGKGGC‐induced chiral manganese dioxide supraparticles (MnO2 SPs) are prepared for sensitive quantification of matrix metalloproteinase‐9 (MMP‐9) in vitro and in vivo. The results show that L‐type manganese dioxide supraparticles (L‐MnO2 SPs) exhibited twice the affinity for the cancer cell membrane receptor CD47 (cluster of differentiation, integrin‐associated protein) than D‐type manganese dioxide supraparticles (D‐MnO2 SPs) to accumulate at the tumor site after surface modification of the internalizing arginine‐glycine‐aspartic acid (iRGD) ligand, specifically reacting with the MMP‐9, disassembling into ultrasmall nanoparticles (NPs), and efficiently underwent renal clearance. Furthermore, L‐MnO2 facilitates the quantification of MMP‐9 in mouse tumor xenografts, as demonstrated by circular dichroism (CD) and magnetic resonance imaging (MRI) within 2 h. A strong linear relationship is observed between MMP‐9 concentration and both CD and MRI intensity, ranging from 0.01 to 10 ng mL−1. The corresponding limits of detection (LOD) are 0.0054 ng mL−1 for CD and 0.0062 ng mL−1 for MRI, respectively. hese SPs provide a new approach for exploring chiral advanced biosensors for early diagnosis of cancer.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信