Predesign of Covalent‐Organic Frameworks for Efficient Photocatalytic Dehydrogenative Cross‐Coupling Reaction

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yu Chen, Sheng‐Nan Sun, Xiao‐Hong Chen, Ming‐Lin Chen, Jiao‐Min Lin, Qian Niu, Shun‐Li Li, Jiang Liu, Ya‐Qian Lan
{"title":"Predesign of Covalent‐Organic Frameworks for Efficient Photocatalytic Dehydrogenative Cross‐Coupling Reaction","authors":"Yu Chen, Sheng‐Nan Sun, Xiao‐Hong Chen, Ming‐Lin Chen, Jiao‐Min Lin, Qian Niu, Shun‐Li Li, Jiang Liu, Ya‐Qian Lan","doi":"10.1002/adma.202413638","DOIUrl":null,"url":null,"abstract":"The dehydrogenative cross‐coupling reaction is the premier route for synthesizing important 4‐quinazolinone drugs. However, it usually requires high reaction temperature and long reaction time, and the yield of the final product is low. Here two stable and photosensitive covalent‐organic frameworks (COFs), TAPP‐An and TAPP‐Cu‐An are purposefully designed and constructed to serve as unprecedented heterogeneous tandem catalysts to complete dehydrogenative cross‐coupling reactions in a short time and under mild reaction conditions (room temperature and light), leading to the high‐efficient photosynthesis of 4‐quinazolinones. Particularly, TAPP‐Cu‐An is the best heterogeneous catalyst currently available for the synthesis of 4‐quinazolinones, even surpassing all the catalysts reported so far. It also enables one‐step photosynthesis of 4‐quinazolinones with higher conversion (>99%) and selectivity (>99%) in a shorter time, and the product can be easily prepared on a gram scale. Extensive experiments combined with theoretical calculations show that the excellent photogenerated charge separation and transport capability, as well as the synergistic An‐Cu catalysis in TAPP‐Cu‐An are the main driving forces for this efficient reaction.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"13 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202413638","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The dehydrogenative cross‐coupling reaction is the premier route for synthesizing important 4‐quinazolinone drugs. However, it usually requires high reaction temperature and long reaction time, and the yield of the final product is low. Here two stable and photosensitive covalent‐organic frameworks (COFs), TAPP‐An and TAPP‐Cu‐An are purposefully designed and constructed to serve as unprecedented heterogeneous tandem catalysts to complete dehydrogenative cross‐coupling reactions in a short time and under mild reaction conditions (room temperature and light), leading to the high‐efficient photosynthesis of 4‐quinazolinones. Particularly, TAPP‐Cu‐An is the best heterogeneous catalyst currently available for the synthesis of 4‐quinazolinones, even surpassing all the catalysts reported so far. It also enables one‐step photosynthesis of 4‐quinazolinones with higher conversion (>99%) and selectivity (>99%) in a shorter time, and the product can be easily prepared on a gram scale. Extensive experiments combined with theoretical calculations show that the excellent photogenerated charge separation and transport capability, as well as the synergistic An‐Cu catalysis in TAPP‐Cu‐An are the main driving forces for this efficient reaction.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信