Ultrathin Graphene Oxide Nanoribbon Networks as Architects of Enhanced Performance in Polyamide-Based Nanofiltration Membranes

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kiyoumars Zarshenas, Saeed Habibpour, Saeed Khoshhal Salestan, Haozhen Dou, Mohtada Sadrzadeh, Ahmad Rahimpour, Michael A. Pope, Aiping Yu, Zhongwei Chen
{"title":"Ultrathin Graphene Oxide Nanoribbon Networks as Architects of Enhanced Performance in Polyamide-Based Nanofiltration Membranes","authors":"Kiyoumars Zarshenas,&nbsp;Saeed Habibpour,&nbsp;Saeed Khoshhal Salestan,&nbsp;Haozhen Dou,&nbsp;Mohtada Sadrzadeh,&nbsp;Ahmad Rahimpour,&nbsp;Michael A. Pope,&nbsp;Aiping Yu,&nbsp;Zhongwei Chen","doi":"10.1002/adfm.202414490","DOIUrl":null,"url":null,"abstract":"<p>Customized architecture and chemistry play a pivotal role in conferring exceptional permeability and selectivity to polyamide (PA) membranes for desalination and ionic separation. Herein, a new interfacial polymerization (IP) template, the ultrathin graphene oxide nanoribbon (GONR) networks, is developed to meet the need for minimizing the funnel effect and mediating the IP reaction toward a highly permeable and selective membrane. The coated GONR template efficiently represents the gutter layer role and regulates the adsorption and transport of amine monomers at the GONR interface, which is studied by molecular simulation as well. The structure, electrostatic interaction, capillary rise, and nanoconfinement of the IP template are manipulated by different GONR loadings to optimize the membrane structure. The optimized GONR loading at 0.02 g m<sup>−2</sup> results in a hybrid layered GONR/PA-thin-film-composite nanofiltration membrane with nanostrip crumpled structure beyond the PA context, ultrathin 15 nm PA nanofilm, 80% cross-linking degree, and narrow pore size distribution. The membrane passes the upper bound trade-off with a permeance of 21.3 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup> and a remarkable rejection of 98% for Na<sub>2</sub>SO<sub>4</sub>. This research offers a fresh perspective on comprehensively understanding the role of the IP template in creating a desired membrane for efficient desalination and ionic separation.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 5","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202414490","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Customized architecture and chemistry play a pivotal role in conferring exceptional permeability and selectivity to polyamide (PA) membranes for desalination and ionic separation. Herein, a new interfacial polymerization (IP) template, the ultrathin graphene oxide nanoribbon (GONR) networks, is developed to meet the need for minimizing the funnel effect and mediating the IP reaction toward a highly permeable and selective membrane. The coated GONR template efficiently represents the gutter layer role and regulates the adsorption and transport of amine monomers at the GONR interface, which is studied by molecular simulation as well. The structure, electrostatic interaction, capillary rise, and nanoconfinement of the IP template are manipulated by different GONR loadings to optimize the membrane structure. The optimized GONR loading at 0.02 g m−2 results in a hybrid layered GONR/PA-thin-film-composite nanofiltration membrane with nanostrip crumpled structure beyond the PA context, ultrathin 15 nm PA nanofilm, 80% cross-linking degree, and narrow pore size distribution. The membrane passes the upper bound trade-off with a permeance of 21.3 L m−2 h−1 bar−1 and a remarkable rejection of 98% for Na2SO4. This research offers a fresh perspective on comprehensively understanding the role of the IP template in creating a desired membrane for efficient desalination and ionic separation.

Abstract Image

超薄氧化石墨烯纳米带网络作为聚酰胺基纳滤膜性能增强的架构师
定制的结构和化学在为脱盐和离子分离的聚酰胺(PA)膜赋予卓越的渗透性和选择性方面发挥着关键作用。本文开发了一种新的界面聚合(IP)模板——超薄氧化石墨烯纳米带(GONR)网络,以满足最小化漏斗效应和介导IP反应向高渗透性和选择性膜的需要。包覆的GONR模板有效地发挥了排水沟层的作用,调节了胺类单体在GONR界面的吸附和转运,并进行了分子模拟研究。通过不同的GONR负载对IP模板的结构、静电相互作用、毛细上升和纳米约束进行调控,以优化膜结构。优化后的GONR负载为0.02 g m−2,得到了一种混合层状GONR/PA -薄膜-复合纳滤膜,具有超越PA环境的纳米条状皱褶结构,超薄的15 nm PA纳米膜,80%的交联度,窄孔径分布。该膜通过了上限交换,其渗透率为21.3 L m−2 h−1 bar−1,对Na2SO4的截留率为98%。这项研究为全面理解IP模板在创建高效脱盐和离子分离所需膜中的作用提供了一个新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信