QCL-Based Cryogen-Free THz Optical Wireless Communication Link

IF 9.8 1区 物理与天体物理 Q1 OPTICS
Alessia Sorgi, Marco Meucci, Muhammad A. Umair, Francesco Cappelli, Guido Toci, Paolo De Natale, Leonardo Viti, Andrea C. Ferrari, Miriam S. Vitiello, Luigi Consolino, Jacopo Catani
{"title":"QCL-Based Cryogen-Free THz Optical Wireless Communication Link","authors":"Alessia Sorgi, Marco Meucci, Muhammad A. Umair, Francesco Cappelli, Guido Toci, Paolo De Natale, Leonardo Viti, Andrea C. Ferrari, Miriam S. Vitiello, Luigi Consolino, Jacopo Catani","doi":"10.1002/lpor.202301082","DOIUrl":null,"url":null,"abstract":"The increased demand for high-speed (terabit-per-second) wireless data transmission has driven the shift of the frequency carrier from ubiquitous radio frequency systems toward the 1–5 THz range, triggering a new interest for THz quantum cascade laser (QCL)-based free-space optical (FSO) links. As compared to standard telecom-band FSO links, platforms based on THz frequency sources are inherently robust against Rayleigh scattering. Atmospheric absorption, mainly due to water vapor, limits the achievable link distance range, but at the same time, it shifts channel security on the physical layer. THz QCL-based FSO links are reported with setups requiring cryogenic cooling, seriously limiting their development for mass applications. Here, a cryogen-free, transportable THz FSO communication system is presented relying on a directly modulated 2.83 THz QCL transmitter, hosted in a closed-cycle Stirling cryocooler, and exploiting a room-temperature graphene-based receiver, implementing a binary on-off keying modulation scheme with Manchester encoding. Power-versus-distance measurements and communication tests are performed, and propose a propagation model to extrapolate the performances of the THz link in an optimized configuration. This approach reduces complexity and costs, as compared to the state-of-the-art THz FSO links, and paves the way for the deployment of optical wireless communication systems exploiting the 1–5 THz frequency range.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"5 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202301082","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The increased demand for high-speed (terabit-per-second) wireless data transmission has driven the shift of the frequency carrier from ubiquitous radio frequency systems toward the 1–5 THz range, triggering a new interest for THz quantum cascade laser (QCL)-based free-space optical (FSO) links. As compared to standard telecom-band FSO links, platforms based on THz frequency sources are inherently robust against Rayleigh scattering. Atmospheric absorption, mainly due to water vapor, limits the achievable link distance range, but at the same time, it shifts channel security on the physical layer. THz QCL-based FSO links are reported with setups requiring cryogenic cooling, seriously limiting their development for mass applications. Here, a cryogen-free, transportable THz FSO communication system is presented relying on a directly modulated 2.83 THz QCL transmitter, hosted in a closed-cycle Stirling cryocooler, and exploiting a room-temperature graphene-based receiver, implementing a binary on-off keying modulation scheme with Manchester encoding. Power-versus-distance measurements and communication tests are performed, and propose a propagation model to extrapolate the performances of the THz link in an optimized configuration. This approach reduces complexity and costs, as compared to the state-of-the-art THz FSO links, and paves the way for the deployment of optical wireless communication systems exploiting the 1–5 THz frequency range.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信