Marija Sedak, Maja Đokić, Nina Bilandžić, Tomislav Gomerčić, Miroslav Benić, Manuela Zadravec, Martina Đuras
{"title":"Cetacean species found stranded along Croatian coast of the Adriatic Sea as bioindicators of non-essential trace elements in the environment","authors":"Marija Sedak, Maja Đokić, Nina Bilandžić, Tomislav Gomerčić, Miroslav Benić, Manuela Zadravec, Martina Đuras","doi":"10.1016/j.aquatox.2024.107206","DOIUrl":null,"url":null,"abstract":"In tissues of toothed whales from the Adriatic Sea (muscle, liver, kidney, lung, spleen, adipose tissue and skin) the concentrations of cadmium (Cd), lead (Pb) and arsenic (As) were analysed. In total, 186 dolphins were analysed; 155 bottlenose (<ce:italic>Tursiops truncatus</ce:italic>), 25 striped <ce:italic>(Stenella coeruleoalba</ce:italic>) and 6 Risso's dolphins (<ce:italic>Grampus griseus)</ce:italic>. Cadmium concentrations in tissue samples ranged from 0.001 mg/kg in muscle to 16.8 mg/kg wet weight in kidney. Arsenic concentrations in dolphin samples ranged from 0.010 to 12.9 mg/kg ww. The lowest As concentration was found in spleen and highest in liver of bottlenose dolphin. Cadmium and As levels in Risso's dolphins showed higher concentrations in all tissues in comparison to bottlenose and striped dolphins. >50 % of the measured Pb values for all three species of dolphins and examined tissues were lower than 0.1 mg/kg. The accumulation of Cd and As during the lifetime was confirmed. None of the dolphins analysed in this study were exposed to concentrations of Cd in the liver higher than 20 mg/kg wet weight, which can cause renal failure in marine mammals. Numerous species of marine mammals inhabit coastal environments alongside humans and utilize similar food sources, such as fish and cephalopods. Consequently, these mammals can function as valuable indicators of public health concerns.","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"1 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.aquatox.2024.107206","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In tissues of toothed whales from the Adriatic Sea (muscle, liver, kidney, lung, spleen, adipose tissue and skin) the concentrations of cadmium (Cd), lead (Pb) and arsenic (As) were analysed. In total, 186 dolphins were analysed; 155 bottlenose (Tursiops truncatus), 25 striped (Stenella coeruleoalba) and 6 Risso's dolphins (Grampus griseus). Cadmium concentrations in tissue samples ranged from 0.001 mg/kg in muscle to 16.8 mg/kg wet weight in kidney. Arsenic concentrations in dolphin samples ranged from 0.010 to 12.9 mg/kg ww. The lowest As concentration was found in spleen and highest in liver of bottlenose dolphin. Cadmium and As levels in Risso's dolphins showed higher concentrations in all tissues in comparison to bottlenose and striped dolphins. >50 % of the measured Pb values for all three species of dolphins and examined tissues were lower than 0.1 mg/kg. The accumulation of Cd and As during the lifetime was confirmed. None of the dolphins analysed in this study were exposed to concentrations of Cd in the liver higher than 20 mg/kg wet weight, which can cause renal failure in marine mammals. Numerous species of marine mammals inhabit coastal environments alongside humans and utilize similar food sources, such as fish and cephalopods. Consequently, these mammals can function as valuable indicators of public health concerns.
期刊介绍:
Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems.
Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants
The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.