Andrew Dopilka, Jonathan M. Larson, Robert Kostecki
{"title":"Operando Infrared Nanospectroscopy of the Silicon/Electrolyte Interface during Initial Stages of Solid-Electrolyte-Interphase Layer Formation","authors":"Andrew Dopilka, Jonathan M. Larson, Robert Kostecki","doi":"10.1021/acsenergylett.4c03255","DOIUrl":null,"url":null,"abstract":"The solid electrolyte interphase (SEI) is a critical component in Li-ion batteries; however, its nanoscale structure and composition and unstable nature make it difficult to characterize and ascertain primary functional mechanisms. We use <i>operando</i> nanoscale Fourier transform infrared spectroscopy (nano-FTIR) with a broadband synchrotron IR source to study the SEI formation on a thin-film Si electrode at nanometer-scale spatial resolution as a function of time and voltage. By probing the Si/carbonate electrolyte interface through a 25 nm-thick amorphous Si window/electrode, we detect molecular vibrational modes within a 10s of nanometers region adjacent to the Si surface and observe that PF<sub>6</sub><sup>–</sup> anions react to form LiF at 0.5 V. Spatially resolved nano-FTIR spectra showcase subtle nanoscale heterogeneities in the initial solid/liquid interface and the resulting deposited LiF. With its nanoscale resolution and high chemical specificity, <i>operando</i> nano-FTIR provides unique insights into the dynamics and heterogeneous formation of SEIs and opens opportunities for connecting nanoscale interfacial properties to bulk performance metrics.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"41 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c03255","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The solid electrolyte interphase (SEI) is a critical component in Li-ion batteries; however, its nanoscale structure and composition and unstable nature make it difficult to characterize and ascertain primary functional mechanisms. We use operando nanoscale Fourier transform infrared spectroscopy (nano-FTIR) with a broadband synchrotron IR source to study the SEI formation on a thin-film Si electrode at nanometer-scale spatial resolution as a function of time and voltage. By probing the Si/carbonate electrolyte interface through a 25 nm-thick amorphous Si window/electrode, we detect molecular vibrational modes within a 10s of nanometers region adjacent to the Si surface and observe that PF6– anions react to form LiF at 0.5 V. Spatially resolved nano-FTIR spectra showcase subtle nanoscale heterogeneities in the initial solid/liquid interface and the resulting deposited LiF. With its nanoscale resolution and high chemical specificity, operando nano-FTIR provides unique insights into the dynamics and heterogeneous formation of SEIs and opens opportunities for connecting nanoscale interfacial properties to bulk performance metrics.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.