{"title":"Uncertainty principles, restriction, Bourgain's Λq theorem, and signal recovery","authors":"A. Iosevich, A. Mayeli","doi":"10.1016/j.acha.2024.101734","DOIUrl":null,"url":null,"abstract":"Let <ce:italic>G</ce:italic> be a finite abelian group. Let <mml:math altimg=\"si1.svg\"><mml:mi>f</mml:mi><mml:mo>:</mml:mo><mml:mi>G</mml:mi><mml:mo stretchy=\"false\">→</mml:mo><mml:mi mathvariant=\"double-struck\">C</mml:mi></mml:math> be a signal (i.e. function). The classical uncertainty principle asserts that the product of the size of the support of <ce:italic>f</ce:italic> and its Fourier transform <mml:math altimg=\"si2.svg\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>f</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy=\"false\">ˆ</mml:mo></mml:mrow></mml:mover></mml:math>, <mml:math altimg=\"si3.svg\"><mml:mtext>supp</mml:mtext><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>f</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:math> and <mml:math altimg=\"si4.svg\"><mml:mtext>supp</mml:mtext><mml:mo stretchy=\"false\">(</mml:mo><mml:mover accent=\"true\"><mml:mrow><mml:mi>f</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy=\"false\">ˆ</mml:mo></mml:mrow></mml:mover><mml:mo stretchy=\"false\">)</mml:mo></mml:math> respectively, must satisfy the condition:<ce:display><ce:formula><mml:math altimg=\"si5.svg\"><mml:mo stretchy=\"false\">|</mml:mo><mml:mtext>supp</mml:mtext><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>f</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mo stretchy=\"false\">|</mml:mo><mml:mo>⋅</mml:mo><mml:mo stretchy=\"false\">|</mml:mo><mml:mtext>supp</mml:mtext><mml:mo stretchy=\"false\">(</mml:mo><mml:mover accent=\"true\"><mml:mrow><mml:mi>f</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy=\"false\">ˆ</mml:mo></mml:mrow></mml:mover><mml:mo stretchy=\"false\">)</mml:mo><mml:mo stretchy=\"false\">|</mml:mo><mml:mo>≥</mml:mo><mml:mo stretchy=\"false\">|</mml:mo><mml:mi>G</mml:mi><mml:mo stretchy=\"false\">|</mml:mo><mml:mo>.</mml:mo></mml:math></ce:formula></ce:display>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"33 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.acha.2024.101734","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Let G be a finite abelian group. Let f:G→C be a signal (i.e. function). The classical uncertainty principle asserts that the product of the size of the support of f and its Fourier transform fˆ, supp(f) and supp(fˆ) respectively, must satisfy the condition:|supp(f)|⋅|supp(fˆ)|≥|G|.
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.