Naveen Gupta, S. Sivananthan, Bharath K. Sriperumbudur
{"title":"Optimal rates for functional linear regression with general regularization","authors":"Naveen Gupta, S. Sivananthan, Bharath K. Sriperumbudur","doi":"10.1016/j.acha.2024.101745","DOIUrl":null,"url":null,"abstract":"Functional linear regression is one of the fundamental and well-studied methods in functional data analysis. In this work, we investigate the functional linear regression model within the context of reproducing kernel Hilbert space by employing general spectral regularization to approximate the slope function with certain smoothness assumptions. We establish optimal convergence rates for estimation and prediction errors associated with the proposed method under Hölder type source condition, which generalizes and sharpens all the known results in the literature.","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"83 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.acha.2024.101745","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Functional linear regression is one of the fundamental and well-studied methods in functional data analysis. In this work, we investigate the functional linear regression model within the context of reproducing kernel Hilbert space by employing general spectral regularization to approximate the slope function with certain smoothness assumptions. We establish optimal convergence rates for estimation and prediction errors associated with the proposed method under Hölder type source condition, which generalizes and sharpens all the known results in the literature.
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.