Bhaskar Ghawri, Pablo Bastante, Kenji Watanabe, Takashi Taniguchi, Michel Calame, Mickael Perrin, Jian Zhang
{"title":"Electronic confinement induced quantum dot behavior in magic-angle twisted bilayer graphene","authors":"Bhaskar Ghawri, Pablo Bastante, Kenji Watanabe, Takashi Taniguchi, Michel Calame, Mickael Perrin, Jian Zhang","doi":"10.1039/d4nr02824d","DOIUrl":null,"url":null,"abstract":"Magic-angle twisted bilayer graphene (TBLG) has emerged as a versatile platform to explore correlated electron phases driven primarily by low-energy flat bands in moiré superlattices. While techniques for controlling the twist angle between graphene layers have spurred rapid experimental progress, understanding the effects of doping inhomogeneity on electronic transport in correlated electron systems remains challenging. In this work, we investigate the interplay of confinement and doping inhomogeneity on the electrical transport properties of TBLG by leveraging device dimensions and twist angle. We show that reducing device dimensions can magnify disorder potentials caused by doping inhomogeneity, resulting in pronounced carrier confinement. This phenomenon is evident in charge transport measurements, where the Coulomb blockade effect is observed. Temperature-dependent measurements reveal a large variation in the activation gap across the device. These findings highlight the critical role of doping inhomogeneity in TBLG and its significant impact on the transport properties of the system.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"24 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr02824d","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Magic-angle twisted bilayer graphene (TBLG) has emerged as a versatile platform to explore correlated electron phases driven primarily by low-energy flat bands in moiré superlattices. While techniques for controlling the twist angle between graphene layers have spurred rapid experimental progress, understanding the effects of doping inhomogeneity on electronic transport in correlated electron systems remains challenging. In this work, we investigate the interplay of confinement and doping inhomogeneity on the electrical transport properties of TBLG by leveraging device dimensions and twist angle. We show that reducing device dimensions can magnify disorder potentials caused by doping inhomogeneity, resulting in pronounced carrier confinement. This phenomenon is evident in charge transport measurements, where the Coulomb blockade effect is observed. Temperature-dependent measurements reveal a large variation in the activation gap across the device. These findings highlight the critical role of doping inhomogeneity in TBLG and its significant impact on the transport properties of the system.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.