Metasurface-Based Phosphor-Converted Micro-LED Architecture for Displays─Creating Guided Modes for Enhanced Directionality

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-12-23 DOI:10.1021/acsnano.4c13472
Debapriya Pal, Toni López, A. Femius Koenderink
{"title":"Metasurface-Based Phosphor-Converted Micro-LED Architecture for Displays─Creating Guided Modes for Enhanced Directionality","authors":"Debapriya Pal, Toni López, A. Femius Koenderink","doi":"10.1021/acsnano.4c13472","DOIUrl":null,"url":null,"abstract":"Phosphor-converted micro-light emitting diodes (micro-LEDs) are a crucial technology for display applications but face significant challenges in light extraction because of the high refractive index of the blue pump die chip. In this study, we design and experimentally demonstrate a nanophotonic approach that overcomes this issue, achieving up to a 3-fold increase in light extraction efficiency. Our approach involves engineering the local density of optical states (LDOS) to generate quasi-guided modes within the phosphor layer by strategically inserting a thin low-index spacer in combination with a metasurface for mode extraction. We demonstrate the trade-offs between blue light pumping, LDOS enhancement at the converted emission wavelength, and radiation pattern control using a stratified system solver for dipole emission. Experimentally, the integration of plasmonic antennas and a silica spacer resulted in a 3-fold overall brightness enhancement, with nearly a 4-fold increase in forward emission. This nanophotonic metasurface waveguide design is a critical advancement for producing bright, directional micro-LEDs, particularly in augmented/virtual reality (AR/VR) devices and smartwatch displays, without the need for bulky secondary optics or reflectors.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"82 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c13472","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Phosphor-converted micro-light emitting diodes (micro-LEDs) are a crucial technology for display applications but face significant challenges in light extraction because of the high refractive index of the blue pump die chip. In this study, we design and experimentally demonstrate a nanophotonic approach that overcomes this issue, achieving up to a 3-fold increase in light extraction efficiency. Our approach involves engineering the local density of optical states (LDOS) to generate quasi-guided modes within the phosphor layer by strategically inserting a thin low-index spacer in combination with a metasurface for mode extraction. We demonstrate the trade-offs between blue light pumping, LDOS enhancement at the converted emission wavelength, and radiation pattern control using a stratified system solver for dipole emission. Experimentally, the integration of plasmonic antennas and a silica spacer resulted in a 3-fold overall brightness enhancement, with nearly a 4-fold increase in forward emission. This nanophotonic metasurface waveguide design is a critical advancement for producing bright, directional micro-LEDs, particularly in augmented/virtual reality (AR/VR) devices and smartwatch displays, without the need for bulky secondary optics or reflectors.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信