High-Performance and Stable Perovskite/Organic Tandem Solar Cells Enabled by Interconnecting Layer Engineering

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-12-23 DOI:10.1021/acsnano.4c11888
Songtao Liu, Lu Hao, Jiangkai Yu, Yao Xu, Yuejia Dou, Juxuan Xie, Yazhong Wang, Kai Zhang, Fei Huang, Yong Cao
{"title":"High-Performance and Stable Perovskite/Organic Tandem Solar Cells Enabled by Interconnecting Layer Engineering","authors":"Songtao Liu, Lu Hao, Jiangkai Yu, Yao Xu, Yuejia Dou, Juxuan Xie, Yazhong Wang, Kai Zhang, Fei Huang, Yong Cao","doi":"10.1021/acsnano.4c11888","DOIUrl":null,"url":null,"abstract":"Perovskite/organic tandem solar cells (PO-TSCs) have recently attracted increasing attention due to their high efficiency and excellent stability. The interconnecting layer (ICL) is of great importance for the performance of PO-TSCs. The charge transport layer (CTL) and the charge recombination layer (CRL) that form the ICL should be carefully designed to enhance charge carrier extraction and promote charge carrier recombination balance from the two subcells. Here, we propose an effective strategy to optimize the ICL by using [2-(9<i>H</i>-carbazol-9-yl)ethyl]phosphonic acid (2PACz) to modify the poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) as the hole transport layer (HTL) in the ICL. It is found that the coverage state of 2PACz on the PEDOT:PSS significantly affects the performance of PO-TSCs and can be regulated by adjusting the concentration of the 2PACz solution. The PEDOT:PSS/2PACz structure facilitates effective charge carrier extraction from the organic solar cells to the CRL. Herein, for the PO-TSCs, this strategy results in an efficient and balanced charge carrier recombination in the ICL and also allows a thinner PEDOT:PSS with reduced parasitic absorption. As a result, the PO-TSC achieves a power conversion efficiency (PCE) of 25.26%, much higher than the control device (PCE of 23.57%), and better stability. This work demonstrates an effective approach to achieving high-performance PO-TSCs through ICL engineering.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"112 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c11888","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite/organic tandem solar cells (PO-TSCs) have recently attracted increasing attention due to their high efficiency and excellent stability. The interconnecting layer (ICL) is of great importance for the performance of PO-TSCs. The charge transport layer (CTL) and the charge recombination layer (CRL) that form the ICL should be carefully designed to enhance charge carrier extraction and promote charge carrier recombination balance from the two subcells. Here, we propose an effective strategy to optimize the ICL by using [2-(9H-carbazol-9-yl)ethyl]phosphonic acid (2PACz) to modify the poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) as the hole transport layer (HTL) in the ICL. It is found that the coverage state of 2PACz on the PEDOT:PSS significantly affects the performance of PO-TSCs and can be regulated by adjusting the concentration of the 2PACz solution. The PEDOT:PSS/2PACz structure facilitates effective charge carrier extraction from the organic solar cells to the CRL. Herein, for the PO-TSCs, this strategy results in an efficient and balanced charge carrier recombination in the ICL and also allows a thinner PEDOT:PSS with reduced parasitic absorption. As a result, the PO-TSC achieves a power conversion efficiency (PCE) of 25.26%, much higher than the control device (PCE of 23.57%), and better stability. This work demonstrates an effective approach to achieving high-performance PO-TSCs through ICL engineering.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信