Cationic Magnetic Nanoparticles Activate Natural Killer Cells for the Treatment of Glioblastoma

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2024-12-23 DOI:10.1021/acsnano.4c11250
Zhi-Yong Rao, Jing Kuang, Ting Pan, You-Teng Qin, Qian-Xiao Huang, Yu-Liang Sun, Kai Zhao, Xiao-Kang Jin, Chi-Hui Yang, Shi-Man Zhang, Yu Yan, Xian-Zheng Zhang
{"title":"Cationic Magnetic Nanoparticles Activate Natural Killer Cells for the Treatment of Glioblastoma","authors":"Zhi-Yong Rao, Jing Kuang, Ting Pan, You-Teng Qin, Qian-Xiao Huang, Yu-Liang Sun, Kai Zhao, Xiao-Kang Jin, Chi-Hui Yang, Shi-Man Zhang, Yu Yan, Xian-Zheng Zhang","doi":"10.1021/acsnano.4c11250","DOIUrl":null,"url":null,"abstract":"The blood–brain barrier (BBB) and the immunosuppressive microenvironment of glioblastoma (GBM) severely hinder the infiltration and activity of natural killer (NK) cells, thereby reducing their clinical efficacy in GBM treatment. To address this challenge, we introduced an engineered living material, HEFDS-NK cells, designed to enhance the penetration of NK cells across the BBB and improve their cytotoxicity against GBM. HEFDS comprises magnetic nanoparticles modified using cationic polyethylenimine (PEI), selenocysteine (Sec), and sodium hyaluronate (HA) and cocultured with NK cells to form HEFDS-NK cells. With the assistance of HA and magnet targeting, HEFDS-NK cells can effectively cross the BBB and localize at the GBM site. Moreover, PEI enhances the expression of C–X–C chemokine receptor type 4 (CXCR4) and C–C chemokine receptor type 4 (CCR4) on NK cells, thereby improving their recognition and cytotoxicity against GBM. Additionally, Sec boosts the immune activity of NK cells against GBM. Upon recognizing GBM, the activated HEFDS-NK cells produce Granzyme B, Perforin, and IFN-γ, ultimately achieving effective therapy for GBM. This study demonstrates an effective treatment of GBM while enhancing NK cell activity and their ability to penetrate the BBB, providing an innovative and high-precision therapeutic approach for GBM.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"33 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c11250","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The blood–brain barrier (BBB) and the immunosuppressive microenvironment of glioblastoma (GBM) severely hinder the infiltration and activity of natural killer (NK) cells, thereby reducing their clinical efficacy in GBM treatment. To address this challenge, we introduced an engineered living material, HEFDS-NK cells, designed to enhance the penetration of NK cells across the BBB and improve their cytotoxicity against GBM. HEFDS comprises magnetic nanoparticles modified using cationic polyethylenimine (PEI), selenocysteine (Sec), and sodium hyaluronate (HA) and cocultured with NK cells to form HEFDS-NK cells. With the assistance of HA and magnet targeting, HEFDS-NK cells can effectively cross the BBB and localize at the GBM site. Moreover, PEI enhances the expression of C–X–C chemokine receptor type 4 (CXCR4) and C–C chemokine receptor type 4 (CCR4) on NK cells, thereby improving their recognition and cytotoxicity against GBM. Additionally, Sec boosts the immune activity of NK cells against GBM. Upon recognizing GBM, the activated HEFDS-NK cells produce Granzyme B, Perforin, and IFN-γ, ultimately achieving effective therapy for GBM. This study demonstrates an effective treatment of GBM while enhancing NK cell activity and their ability to penetrate the BBB, providing an innovative and high-precision therapeutic approach for GBM.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信