Dezhi Liu, Yangyang Huai, Rui Liao, Binbin Li, Lingming Zeng
{"title":"Enhancement mechanisms of tetrapotassium pyrophosphate on flotation separation of pyrite from fine serpentine","authors":"Dezhi Liu, Yangyang Huai, Rui Liao, Binbin Li, Lingming Zeng","doi":"10.1016/j.mineng.2024.109159","DOIUrl":null,"url":null,"abstract":"During the serpentine-contained sulfide ores flotation process, the presence of serpentine slimes will intensively deteriorate the flotation performance of sulfide ores due to hetero-coagulation. To handle this issue, tetrapotassium pyrophosphate (TKPP) was used as a novel depressant in this work. Micro-flotation results revealed that the addition of 5 g/L fine serpentine particle (−10 µm) caused a substantial reduction of approximately 82.5 % in pyrite recovery at pH 9. However, the detrimental impact of fine serpentine could be efficiently mitigated by the application of 30 mg/L TKPP, with a marked increase in pyrite recovery from 10.15 % to 91.25 %. The underlying mechanisms were elucidated using various characterization methods, revealing a significant shift in the surface charge of serpentine from positive to negative upon the addition of 30 mg/L TKPP, while the surface charge of pyrite remained largely unchanged. Consequently, a well-dispersion state of the mixed minerals pulp was achieved due to the identical surface charge. The alteration mechanisms of TKPP on serpentine involved the selective adsorption through forming P-O-Mg bonds and the accelerated decomposition of Mg<ce:sup loc=\"post\">2+</ce:sup> from serpentine. This study highlights the promising role of TKPP in reducing Mg in sulfide concentrator, proving a feasible solution for sulfide beneficiation operations.","PeriodicalId":18594,"journal":{"name":"Minerals Engineering","volume":"47 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.mineng.2024.109159","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
During the serpentine-contained sulfide ores flotation process, the presence of serpentine slimes will intensively deteriorate the flotation performance of sulfide ores due to hetero-coagulation. To handle this issue, tetrapotassium pyrophosphate (TKPP) was used as a novel depressant in this work. Micro-flotation results revealed that the addition of 5 g/L fine serpentine particle (−10 µm) caused a substantial reduction of approximately 82.5 % in pyrite recovery at pH 9. However, the detrimental impact of fine serpentine could be efficiently mitigated by the application of 30 mg/L TKPP, with a marked increase in pyrite recovery from 10.15 % to 91.25 %. The underlying mechanisms were elucidated using various characterization methods, revealing a significant shift in the surface charge of serpentine from positive to negative upon the addition of 30 mg/L TKPP, while the surface charge of pyrite remained largely unchanged. Consequently, a well-dispersion state of the mixed minerals pulp was achieved due to the identical surface charge. The alteration mechanisms of TKPP on serpentine involved the selective adsorption through forming P-O-Mg bonds and the accelerated decomposition of Mg2+ from serpentine. This study highlights the promising role of TKPP in reducing Mg in sulfide concentrator, proving a feasible solution for sulfide beneficiation operations.
期刊介绍:
The purpose of the journal is to provide for the rapid publication of topical papers featuring the latest developments in the allied fields of mineral processing and extractive metallurgy. Its wide ranging coverage of research and practical (operating) topics includes physical separation methods, such as comminution, flotation concentration and dewatering, chemical methods such as bio-, hydro-, and electro-metallurgy, analytical techniques, process control, simulation and instrumentation, and mineralogical aspects of processing. Environmental issues, particularly those pertaining to sustainable development, will also be strongly covered.