{"title":"Efficient Hyperbranched Flame Retardant Derived from Quercetin for Use in Epoxy Resin with Well-Balanced Comprehensive Performance","authors":"Yun Zhao, Chengshu Yan, Jiatao Cao, Shuai He, Zhenfeng Huang, Nanlan Shen, Zongmin Zhu, Hai-Bo Zhao, Wenhui Rao","doi":"10.1021/acssuschemeng.4c08829","DOIUrl":null,"url":null,"abstract":"Traditional flame retardants, often derived from petrochemical sources, pose significant environmental and health concerns due to their potential toxicity and persistence in the environment. In this study, a biobased hyperbranched polymer flame retardant named QB was synthesized using quercetin and phenylphosphoryl dichloride by a one-step method. The QB copolymer was characterized via Fourier transform infrared spectroscopy, thermogravimetric analysis, and gel permeation chromatography, revealing its high thermal stability and polymeric nature, with a weight-average molecular weight of 78 299 g/mol. QB was subsequently incorporated into bisphenol A-type epoxy resins using 4–4 diamino diphenylmethane as a curing agent to prepare the flame-retardant epoxy composite. With additions of only 1 wt % QB, EQB-1 achieved a UL 94 V-0 rating in the vertical burning test and an impressive limiting oxygen index (LOI) value of 28.2%. Moreover, the addition of the 3 wt % QB in EP resulted in a maximum reduction of 32.9% in the peak of heat release rate and a 37.4% reduction in the smoke produce rate, indicating its outstanding flame-retardant and smoke suppression properties, which are attributed to a mainly condensed-phase flame-retardant mechanism. Furthermore, the impact and flexural strength of the composite were maintained and a slight improvement was observed. The findings of this research are expected to contribute to the development of environmentally friendly flame-retardant epoxy systems that meet industry standards while promoting the use of renewable materials. This work supports sustainability by replacing petrochemical flame retardants with renewable quercetin-based materials, reducing toxicity and environmental impact.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"287 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c08829","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional flame retardants, often derived from petrochemical sources, pose significant environmental and health concerns due to their potential toxicity and persistence in the environment. In this study, a biobased hyperbranched polymer flame retardant named QB was synthesized using quercetin and phenylphosphoryl dichloride by a one-step method. The QB copolymer was characterized via Fourier transform infrared spectroscopy, thermogravimetric analysis, and gel permeation chromatography, revealing its high thermal stability and polymeric nature, with a weight-average molecular weight of 78 299 g/mol. QB was subsequently incorporated into bisphenol A-type epoxy resins using 4–4 diamino diphenylmethane as a curing agent to prepare the flame-retardant epoxy composite. With additions of only 1 wt % QB, EQB-1 achieved a UL 94 V-0 rating in the vertical burning test and an impressive limiting oxygen index (LOI) value of 28.2%. Moreover, the addition of the 3 wt % QB in EP resulted in a maximum reduction of 32.9% in the peak of heat release rate and a 37.4% reduction in the smoke produce rate, indicating its outstanding flame-retardant and smoke suppression properties, which are attributed to a mainly condensed-phase flame-retardant mechanism. Furthermore, the impact and flexural strength of the composite were maintained and a slight improvement was observed. The findings of this research are expected to contribute to the development of environmentally friendly flame-retardant epoxy systems that meet industry standards while promoting the use of renewable materials. This work supports sustainability by replacing petrochemical flame retardants with renewable quercetin-based materials, reducing toxicity and environmental impact.
期刊介绍:
ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment.
The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.