Aqueous and Biphasic Coupling of Furfural and Cyclopentanone for the Synthesis of Bio-Jet Fuel Precursors

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Rick Baldenhofer, Jean-Paul Lange, Sascha R. A. Kersten, M. Pilar Ruiz
{"title":"Aqueous and Biphasic Coupling of Furfural and Cyclopentanone for the Synthesis of Bio-Jet Fuel Precursors","authors":"Rick Baldenhofer, Jean-Paul Lange, Sascha R. A. Kersten, M. Pilar Ruiz","doi":"10.1021/acssuschemeng.4c09269","DOIUrl":null,"url":null,"abstract":"We report on the aldol condensation of furfural and cyclopentanone in aqueous and biphasic mediums as a promising step for producing sustainable aviation fuel. Key parameters, including catalyst concentration, reactant concentration, temperature, and solvent, were found to significantly influence conversion and product selectivity. Alkaline conditions were essential for aldol coupling, with significant conversion observed at pH 12 and higher. The activation energies for the formation of the dimeric and trimeric aldol adducts were similar at 74 and 76 kJ/mol, respectively. Biphasic conditions were employed to prevent product precipitation, leading to reactor and equipment fouling. For biphasic conditions, the extraction of the reactants and dimeric intermediates to the organic phase affected rate and selectivity, resulting in the dilemma. Good product extraction leads to inevitable reactant extraction. Based on these findings, an integrated biphasic process design was proposed, utilizing process-owned solvents to optimize the separation and recycling of aqueous streams and improve the overall process efficiency.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"24 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c09269","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We report on the aldol condensation of furfural and cyclopentanone in aqueous and biphasic mediums as a promising step for producing sustainable aviation fuel. Key parameters, including catalyst concentration, reactant concentration, temperature, and solvent, were found to significantly influence conversion and product selectivity. Alkaline conditions were essential for aldol coupling, with significant conversion observed at pH 12 and higher. The activation energies for the formation of the dimeric and trimeric aldol adducts were similar at 74 and 76 kJ/mol, respectively. Biphasic conditions were employed to prevent product precipitation, leading to reactor and equipment fouling. For biphasic conditions, the extraction of the reactants and dimeric intermediates to the organic phase affected rate and selectivity, resulting in the dilemma. Good product extraction leads to inevitable reactant extraction. Based on these findings, an integrated biphasic process design was proposed, utilizing process-owned solvents to optimize the separation and recycling of aqueous streams and improve the overall process efficiency.

Abstract Image

糠醛与环戊酮水双相偶联合成生物喷气燃料前驱体
我们报道了糠醛和环戊酮在水相和双相介质中的缩醛反应,这是生产可持续航空燃料的一个有前途的步骤。催化剂浓度、反应物浓度、温度和溶剂等关键参数对转化率和产物选择性有显著影响。碱性条件是醛醇偶联的必要条件,在pH为12或更高的条件下观察到显著的转化。二聚体和三聚体醛醇加合物的形成活化能分别为74和76 kJ/mol。采用双相条件防止产物沉淀,导致反应器和设备污染。在双相条件下,反应物和二聚体中间体向有机相的萃取影响了速率和选择性,导致了两难选择。良好的生成物萃取必然导致反应物的萃取。在此基础上,提出了一种集成的双相工艺设计,利用工艺自有溶剂优化水相分离和回收,提高整体工艺效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信