{"title":"Modulating Lattice Oxygen through an Alkaline Earth Metal Promoter for Chemical Looping Oxidative Dehydrogenation of Propane","authors":"Wei Wang, Sai Chen, Jiachen Sun, Ziyi Li, Xianhui Wang, Yiyi Xu, Zelin Wu, Donglong Fu, Chunlei Pei, Zhi-Jian Zhao, Jinlong Gong","doi":"10.1021/acscatal.4c06614","DOIUrl":null,"url":null,"abstract":"Rational design of metal oxide-type redox catalysts for selective propylene production is of paramount importance, yet remains challenging. This paper describes the structural and electronic effect of an alkaline earth metal promoter on lattice oxygen reactivity for chemical looping oxidative dehydrogenation (CL-ODH) of propane through the configuration of core–shell-type redox catalysts, which consist of a redox-active FeVO<sub>4</sub> core and a selective mixed alkaline earth metal oxide shell. A systematic study demonstrates that Mg is the optimal promoter among all alkali and alkaline earth metals investigated, and the formed Mg<sub>2</sub>V<sub>2</sub>O<sub>7</sub> outer shell provides a catalytic surface for C–H activation while blocking the nonselective sites for FeVO<sub>4</sub>, typically as an oxygen carrier. The core–shell redox catalyst with a higher coverage of the Mg<sub>2</sub>V<sub>2</sub>O<sub>7</sub> layer achieves an enhanced propylene selectivity of 80.8% at an operation temperature of 550 °C. The design strategy highlights the exploration of alkaline earth metals in redox catalysts for chemical looping processes.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"20 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c06614","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Rational design of metal oxide-type redox catalysts for selective propylene production is of paramount importance, yet remains challenging. This paper describes the structural and electronic effect of an alkaline earth metal promoter on lattice oxygen reactivity for chemical looping oxidative dehydrogenation (CL-ODH) of propane through the configuration of core–shell-type redox catalysts, which consist of a redox-active FeVO4 core and a selective mixed alkaline earth metal oxide shell. A systematic study demonstrates that Mg is the optimal promoter among all alkali and alkaline earth metals investigated, and the formed Mg2V2O7 outer shell provides a catalytic surface for C–H activation while blocking the nonselective sites for FeVO4, typically as an oxygen carrier. The core–shell redox catalyst with a higher coverage of the Mg2V2O7 layer achieves an enhanced propylene selectivity of 80.8% at an operation temperature of 550 °C. The design strategy highlights the exploration of alkaline earth metals in redox catalysts for chemical looping processes.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.