{"title":"Full voltage control of giant magnetoresistance","authors":"Lujun Wei, Yiyang Zhang, Fei Huang, Wei Niu, Feng Li, Jiaju Yang, Jincheng Peng, Yanghui Li, Yu Lu, Jiarui Chen, Weihao Wang, Tianyu Liu, Yong Pu, Jun Du","doi":"10.1063/5.0246117","DOIUrl":null,"url":null,"abstract":"The aim of voltage control of magnetism is to reduce the power consumption of spintronic devices. For a spin valve, the relative magnetic orientation for the two ferromagnetic layers is a key factor determining the giant magnetoresistance (GMR) ratio. However, achieving full voltage manipulation of the magnetization directions between parallel and antiparallel states is a significant challenge. Here, we demonstrate that by utilizing two exchange-biased Co/IrMn bilayers with opposite pinning directions and with ferromagnetic interlayer coupling between the two Co layers, the magnetization alignment of the two Co layers of a spin valve can be switched between antiparallel and nearly parallel states by voltage-induced strain, leading to a full voltage control of GMR in a repeatable manner. The magnetization rotating processes for the two Co layers under different voltages can be clearly demonstrated by simulations based on the Landau–Lifshitz–Gilbert equation. This work provides valuable references for the development of full voltage-controlled spintronic devices with low energy consumption.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"113 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0246117","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of voltage control of magnetism is to reduce the power consumption of spintronic devices. For a spin valve, the relative magnetic orientation for the two ferromagnetic layers is a key factor determining the giant magnetoresistance (GMR) ratio. However, achieving full voltage manipulation of the magnetization directions between parallel and antiparallel states is a significant challenge. Here, we demonstrate that by utilizing two exchange-biased Co/IrMn bilayers with opposite pinning directions and with ferromagnetic interlayer coupling between the two Co layers, the magnetization alignment of the two Co layers of a spin valve can be switched between antiparallel and nearly parallel states by voltage-induced strain, leading to a full voltage control of GMR in a repeatable manner. The magnetization rotating processes for the two Co layers under different voltages can be clearly demonstrated by simulations based on the Landau–Lifshitz–Gilbert equation. This work provides valuable references for the development of full voltage-controlled spintronic devices with low energy consumption.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.