Xiaozhi Liu, Ang Gao, Qinghua Zhang, Yaxian Wang, Yangyang Zhang, Yangfan Li, Xing Zhang, Lin Gu, Jinsong Hu, Dong Su
{"title":"One-dimensional ionic-bonded structures in NiSe nanowire","authors":"Xiaozhi Liu, Ang Gao, Qinghua Zhang, Yaxian Wang, Yangyang Zhang, Yangfan Li, Xing Zhang, Lin Gu, Jinsong Hu, Dong Su","doi":"10.1063/5.0240608","DOIUrl":null,"url":null,"abstract":"One-dimensional van der Waals (1D vdW) materials, characterized by atomic chains bonded ionically or covalently in one direction and held together by van der Waals (vdW) interactions in the perpendicular directions, have recently gained intensive attention due to their exceptional functions. In this work, we report the discovery of one-dimensional (1D) ionic-bonded structures in NiSe nanowires. Utilizing aberration-corrected scanning transmission electron microscopy, we identified four distinct structural phases composed of two fundamental 1D building blocks: a triangle-shaped unit and a parallelogram-shaped unit. These phases can transform into one another through topotactic combinations of the structural units. Density functional theory calculations reveal that these structural units are bound by ionic bonds, unlike the van der Waals forces typically found in 1D vdW materials. The diverse arrangements of these building blocks may give rise to unique electronic structures and magnetic properties, paving the way for designing advanced materials with desired functionalities.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"89 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0240608","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
One-dimensional van der Waals (1D vdW) materials, characterized by atomic chains bonded ionically or covalently in one direction and held together by van der Waals (vdW) interactions in the perpendicular directions, have recently gained intensive attention due to their exceptional functions. In this work, we report the discovery of one-dimensional (1D) ionic-bonded structures in NiSe nanowires. Utilizing aberration-corrected scanning transmission electron microscopy, we identified four distinct structural phases composed of two fundamental 1D building blocks: a triangle-shaped unit and a parallelogram-shaped unit. These phases can transform into one another through topotactic combinations of the structural units. Density functional theory calculations reveal that these structural units are bound by ionic bonds, unlike the van der Waals forces typically found in 1D vdW materials. The diverse arrangements of these building blocks may give rise to unique electronic structures and magnetic properties, paving the way for designing advanced materials with desired functionalities.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.