Seonhee Bae, Hyung-Min Kim, Youngmo Jung, June-Woo Park, Hi Gyu Moon, Sooyeon Kim
{"title":"Assessment of potential ecological risk for microplastics in freshwater ecosystems.","authors":"Seonhee Bae, Hyung-Min Kim, Youngmo Jung, June-Woo Park, Hi Gyu Moon, Sooyeon Kim","doi":"10.1016/j.chemosphere.2024.143995","DOIUrl":null,"url":null,"abstract":"<p><p>Microplastics (MPs) are one of the most widespread environmental pollutants, but their risk assessment to freshwater ecosystems has not been clearly investigated. Risk assessment has been constrained by the absence of MP concentration in some environment, the diverse types and shapes of MPs, and limitations of polystyrene (PS)-biased toxicity studies. This study examined exposure to MPs in rivers and lakes worldwide, including China (the Three Gorges Dam & Yangtze River (TGD & YR) and the lakes of Wuhan city (WL)), Vietnam (seven lakes of Da Nang city (7UL)), Europe (the Rhine River (RR)), Finland (Kallavesi Lake (KL)), Argentina (nine lakes in the Patagonia region (9LP)), Brazil (Guaiba Lake (GL)), and South Korea (Nakdong River (NR), Han River (HR), and Anyang Stream (AS)), and assessed the risks to aquatic ecosystems based on the toxicity information and morphology of MPs. We also examine the limitations of the traditional risk quotient (RQ)-based risk assessment method for PS-biased toxicity studies. Potential ecological risks were assessed using pollution load index (PLI) and potential ecological risk index (PERI) considering the hazard scores of MP types. RQ was approximately 10<sup>-6</sup> to 10<sup>-4</sup>, indicating negligible risk to aquatic organisms. In contrast, the calculated PLI (> 30: extreme danger) and PERI (> 1200: extreme danger) values suggest that MPs represent serious ecological threats at all the study locations. Furthermore, principal component analysis (PCA) indicated that MP fibers and fragments have a significant impact on the risks for freshwater systems. These MP morphologies derive from surrounding fishing and agricultural activities, and household and clothing industries. The areas surrounding these rivers and lakes are expected to become more densely populated, potentially leading to increased MP emissions and higher risks, suggesting a need to expand wastewater treatment facilities, reduce consumption of single-use plastics, and raise societal awareness of waste plastics.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143995"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chemosphere.2024.143995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics (MPs) are one of the most widespread environmental pollutants, but their risk assessment to freshwater ecosystems has not been clearly investigated. Risk assessment has been constrained by the absence of MP concentration in some environment, the diverse types and shapes of MPs, and limitations of polystyrene (PS)-biased toxicity studies. This study examined exposure to MPs in rivers and lakes worldwide, including China (the Three Gorges Dam & Yangtze River (TGD & YR) and the lakes of Wuhan city (WL)), Vietnam (seven lakes of Da Nang city (7UL)), Europe (the Rhine River (RR)), Finland (Kallavesi Lake (KL)), Argentina (nine lakes in the Patagonia region (9LP)), Brazil (Guaiba Lake (GL)), and South Korea (Nakdong River (NR), Han River (HR), and Anyang Stream (AS)), and assessed the risks to aquatic ecosystems based on the toxicity information and morphology of MPs. We also examine the limitations of the traditional risk quotient (RQ)-based risk assessment method for PS-biased toxicity studies. Potential ecological risks were assessed using pollution load index (PLI) and potential ecological risk index (PERI) considering the hazard scores of MP types. RQ was approximately 10-6 to 10-4, indicating negligible risk to aquatic organisms. In contrast, the calculated PLI (> 30: extreme danger) and PERI (> 1200: extreme danger) values suggest that MPs represent serious ecological threats at all the study locations. Furthermore, principal component analysis (PCA) indicated that MP fibers and fragments have a significant impact on the risks for freshwater systems. These MP morphologies derive from surrounding fishing and agricultural activities, and household and clothing industries. The areas surrounding these rivers and lakes are expected to become more densely populated, potentially leading to increased MP emissions and higher risks, suggesting a need to expand wastewater treatment facilities, reduce consumption of single-use plastics, and raise societal awareness of waste plastics.