Assessing hepatotoxicity induced by co-exposure to chlorpyrifos and deltamethrin in hook snout carp (Opsariichthys bidens Günther): A comprehensive analysis biochemical and molecular response analysis.

Yancen Lou, Yihan Wang, Nan Huang, Panpan Liu, Kan Shao, Chen Chen, Yanhua Wang
{"title":"Assessing hepatotoxicity induced by co-exposure to chlorpyrifos and deltamethrin in hook snout carp (Opsariichthys bidens Günther): A comprehensive analysis biochemical and molecular response analysis.","authors":"Yancen Lou, Yihan Wang, Nan Huang, Panpan Liu, Kan Shao, Chen Chen, Yanhua Wang","doi":"10.1016/j.chemosphere.2024.143939","DOIUrl":null,"url":null,"abstract":"<p><p>Chlorpyrifos (CLP) and deltamethrin (DTM) are among the most widely utilized organophosphate and pyrethroid insecticides globally. Their simultaneous presence in aquatic environments poses significant threats to fish health and challenges the sustainability of aquaculture practices. Despite their prevalence, the combined toxic effects of CLP and DTM on hook snout carp (Opsariichthys bidens Günther) remain insufficiently understood. In this study, O. bidens were exposed to waterborne treatments of CLP, DTM, or their combination for 30 days, and the biochemical and molecular responses of the liver tissue were systematically assessed. Acute toxicity tests revealed that the combined exposure to CLP and DTM resulted in synergistic toxicity. Significant alterations in the activities of key enzymes, including superoxide dismutase (SOD), catalase (CAT), caspase-3 (CASP-3), and caspase-9 (CASP-9), relative to the control group, demonstrated that co-exposure induced oxidative stress in O. bidens. Additionally, the elevated transcriptional levels of immune-related genes such as cxcl-c1c, il-8, and il-1 suggested a pronounced inflammatory response triggered by the pesticide mixture. Conversely, the significantly reduced expression of p53 and esr indicated that combined exposure disrupted apoptotic regulation and endocrine system function in the fish. In summary, these findings demonstrated that co-exposure to CLP and DTM induced liver damage in O. bidens by impairing antioxidant enzyme activity, disrupting apoptosis regulation, and altering the transcriptional profiles of genes involved in immune and endocrine pathways. These results provided new insights into the physiological and molecular mechanisms of pesticide-induced hepatotoxicity in fish and offered valuable information for evaluating the ecological risks associated with pesticide mixtures in aquatic environments.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143939"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chemosphere.2024.143939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Chlorpyrifos (CLP) and deltamethrin (DTM) are among the most widely utilized organophosphate and pyrethroid insecticides globally. Their simultaneous presence in aquatic environments poses significant threats to fish health and challenges the sustainability of aquaculture practices. Despite their prevalence, the combined toxic effects of CLP and DTM on hook snout carp (Opsariichthys bidens Günther) remain insufficiently understood. In this study, O. bidens were exposed to waterborne treatments of CLP, DTM, or their combination for 30 days, and the biochemical and molecular responses of the liver tissue were systematically assessed. Acute toxicity tests revealed that the combined exposure to CLP and DTM resulted in synergistic toxicity. Significant alterations in the activities of key enzymes, including superoxide dismutase (SOD), catalase (CAT), caspase-3 (CASP-3), and caspase-9 (CASP-9), relative to the control group, demonstrated that co-exposure induced oxidative stress in O. bidens. Additionally, the elevated transcriptional levels of immune-related genes such as cxcl-c1c, il-8, and il-1 suggested a pronounced inflammatory response triggered by the pesticide mixture. Conversely, the significantly reduced expression of p53 and esr indicated that combined exposure disrupted apoptotic regulation and endocrine system function in the fish. In summary, these findings demonstrated that co-exposure to CLP and DTM induced liver damage in O. bidens by impairing antioxidant enzyme activity, disrupting apoptosis regulation, and altering the transcriptional profiles of genes involved in immune and endocrine pathways. These results provided new insights into the physiological and molecular mechanisms of pesticide-induced hepatotoxicity in fish and offered valuable information for evaluating the ecological risks associated with pesticide mixtures in aquatic environments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信