{"title":"Nitrided Ti-6Al-4V: A Catalyst for Increase Mineralization and Osteogenic Marker Expression","authors":"Annop Krasaesin, Suttiporn Pinijsuwan, Chatdanai Boonruang, Kanokwan Sriwattanapong, Thantrira Porntaveetus, Thanaphum Osathanon, Shuichi Watanabe, Chavin Jongwannasiri, Chawan Manaspon","doi":"10.1002/jbm.a.37853","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Plasma nitriding is one of the surface modifications that show more effectiveness than other methods. In this study, the plasma-based ion implantation (PBII) technique was performed on the surface of titanium alloy (Ti-6Al-4V, Ti64) using a mixture of nitrogen (N<sub>2</sub>) and argon (Ar), resulting in a plasma-nitrided surface (TiN-Ti64). The surface composition of the TiN-Ti64 was verified through X-ray photoelectron spectroscopy (XPS). TiN-Ti64 demonstrated superior hydrophilicity compared with Ti64. TiN-Ti64 exhibited higher surface hardness than the original surface. The biological responses of primary human alveolar bone cells (hAVs) were observed on the TiN-Ti64, revealing greater activation of cell adhesion and spreading compared with Ti64 and the control group (glass coverslip). Moreover, the TiN-Ti64 significantly promoted cell proliferation compared with Ti64 and tissue culture plates. The mineralization of hAVs on the TiN-Ti64 showed a significant increase, almost 20% greater than that of Ti64. Furthermore, a significant upregulation of mRNA expression for osteogenic differentiation marker genes, including <i>BMP2</i>, <i>OCN</i>, <i>OPN</i>, and <i>RUNX2</i>, was observed in TiN-Ti64 compared with other conditions. In addition, the TiN-Ti64 exhibited antibiofilm activity against <i>Streptococcus aureus.</i> In conclusion, the TiN-Ti64, modified with the PBII technique utilizing a mixture of N<sub>2</sub> and Ar, emerges as a promising alternative for surface modification in dental implant applications.</p>\n </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37853","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Plasma nitriding is one of the surface modifications that show more effectiveness than other methods. In this study, the plasma-based ion implantation (PBII) technique was performed on the surface of titanium alloy (Ti-6Al-4V, Ti64) using a mixture of nitrogen (N2) and argon (Ar), resulting in a plasma-nitrided surface (TiN-Ti64). The surface composition of the TiN-Ti64 was verified through X-ray photoelectron spectroscopy (XPS). TiN-Ti64 demonstrated superior hydrophilicity compared with Ti64. TiN-Ti64 exhibited higher surface hardness than the original surface. The biological responses of primary human alveolar bone cells (hAVs) were observed on the TiN-Ti64, revealing greater activation of cell adhesion and spreading compared with Ti64 and the control group (glass coverslip). Moreover, the TiN-Ti64 significantly promoted cell proliferation compared with Ti64 and tissue culture plates. The mineralization of hAVs on the TiN-Ti64 showed a significant increase, almost 20% greater than that of Ti64. Furthermore, a significant upregulation of mRNA expression for osteogenic differentiation marker genes, including BMP2, OCN, OPN, and RUNX2, was observed in TiN-Ti64 compared with other conditions. In addition, the TiN-Ti64 exhibited antibiofilm activity against Streptococcus aureus. In conclusion, the TiN-Ti64, modified with the PBII technique utilizing a mixture of N2 and Ar, emerges as a promising alternative for surface modification in dental implant applications.
期刊介绍:
The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device.
The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials.
Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.