Bacterial purine metabolism modulates C. elegans development and stress tolerance via DAF-16.

Min Feng, Baizhen Gao, L Rene Garcia, Qing Sun
{"title":"Bacterial purine metabolism modulates C. elegans development and stress tolerance via DAF-16.","authors":"Min Feng, Baizhen Gao, L Rene Garcia, Qing Sun","doi":"10.1111/febs.17363","DOIUrl":null,"url":null,"abstract":"<p><p>The purine metabolism is crucial for cellular function and is a conserved metabolic network from prokaryotes to humans. While extensively studied in microorganisms like yeast and bacteria, the impact of perturbing dietary intermediates from the purine biosynthesis on animal development and growth remains poorly understood. We utilized Caenorhabditis elegans as the metazoan model to investigate the mechanisms underlying this deficiency. Through a high-throughput screening of an Escherichia coli mutant library Keio collection, we identified 34 E. coli mutants that delay C. elegans development. Among these mutants, we found that E. coli purE gene is an essential genetic component that promotes host development in a dose-dependent manner. Further metabolites supplementation suggests that bacterial purE downstream metabolite 5-aminoimidazole-4-carboxamide ribotide (AICAR) can inhibit worm growth. Additionally, we found the FoxO transcription factor DAF-16 is indispensable in worm development delay induced by purE mutation, and observed increased nuclear accumulation of DAF-16 when fed E. coli purE- mutants, suggesting the role of DAF-16 in response to purE mutation. RNA-seq analysis and phenotypic assays revealed that worms fed the E. coli purE mutant exhibited elevated lifespan, thermotolerance, and pathogen resistance. These findings collectively suggest that certain intermediates in the bacterial purine biosynthesis can serve as a cue to modulate development and activate the defense response in the nematode C. elegans through DAF-16.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.17363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The purine metabolism is crucial for cellular function and is a conserved metabolic network from prokaryotes to humans. While extensively studied in microorganisms like yeast and bacteria, the impact of perturbing dietary intermediates from the purine biosynthesis on animal development and growth remains poorly understood. We utilized Caenorhabditis elegans as the metazoan model to investigate the mechanisms underlying this deficiency. Through a high-throughput screening of an Escherichia coli mutant library Keio collection, we identified 34 E. coli mutants that delay C. elegans development. Among these mutants, we found that E. coli purE gene is an essential genetic component that promotes host development in a dose-dependent manner. Further metabolites supplementation suggests that bacterial purE downstream metabolite 5-aminoimidazole-4-carboxamide ribotide (AICAR) can inhibit worm growth. Additionally, we found the FoxO transcription factor DAF-16 is indispensable in worm development delay induced by purE mutation, and observed increased nuclear accumulation of DAF-16 when fed E. coli purE- mutants, suggesting the role of DAF-16 in response to purE mutation. RNA-seq analysis and phenotypic assays revealed that worms fed the E. coli purE mutant exhibited elevated lifespan, thermotolerance, and pathogen resistance. These findings collectively suggest that certain intermediates in the bacterial purine biosynthesis can serve as a cue to modulate development and activate the defense response in the nematode C. elegans through DAF-16.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信