Roberto Catania, Rodrigo Cupertino Bernardes, Marta Bonforte, Lívia Maria Negrini Ferreira, Maria Augusta Pereira Lima, Dariusz Teper, Lucia Zappalà, Gaetana Mazzeo
{"title":"Susceptibility of solitary bees to agrochemicals highlights gaps in bee risk assessment.","authors":"Roberto Catania, Rodrigo Cupertino Bernardes, Marta Bonforte, Lívia Maria Negrini Ferreira, Maria Augusta Pereira Lima, Dariusz Teper, Lucia Zappalà, Gaetana Mazzeo","doi":"10.1016/j.etap.2024.104614","DOIUrl":null,"url":null,"abstract":"<p><p>Ground-nesting solitary bees are the most abundant bee species in the xeric areas of the world, but the effects of agrochemicals on them have been little studied. Herein, we evaluated the topical toxicity of an insecticide, a herbicide, and an essential oil on Mediterranean ground-nesting bees (Andrena impunctata, Andrena nigroolivacea, Andrena stabiana, Andrena vetula), and on the managed Apis mellifera, Bombus terrestris, and Osmia bicornis. We tested the lethal effects of commercial formulations of acetamiprid, glyphosate and a biopesticide based on sweet orange essential oil, and evaluated the locomotor behaviours of managed bees exposed to the same treatments. Although potential differences in pre-experimental conditions of wild bees may have influenced susceptibility, smaller bees, based on the measurements of weight, body length, and inter-tegular distance, were more susceptible to agrochemicals than the larger ones. For the majority of the tested species, acetamiprid was the most toxic compound. Treated bees also showed neuronal symptoms after acetamiprid exposure and locomotor alterations that varied among species and agrochemicals. Our results show how the susceptibility of bees varies between species in relation to their body size, highlighting the need for additional model species in current bee risk assessments.</p>","PeriodicalId":93992,"journal":{"name":"Environmental toxicology and pharmacology","volume":" ","pages":"104614"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental toxicology and pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.etap.2024.104614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ground-nesting solitary bees are the most abundant bee species in the xeric areas of the world, but the effects of agrochemicals on them have been little studied. Herein, we evaluated the topical toxicity of an insecticide, a herbicide, and an essential oil on Mediterranean ground-nesting bees (Andrena impunctata, Andrena nigroolivacea, Andrena stabiana, Andrena vetula), and on the managed Apis mellifera, Bombus terrestris, and Osmia bicornis. We tested the lethal effects of commercial formulations of acetamiprid, glyphosate and a biopesticide based on sweet orange essential oil, and evaluated the locomotor behaviours of managed bees exposed to the same treatments. Although potential differences in pre-experimental conditions of wild bees may have influenced susceptibility, smaller bees, based on the measurements of weight, body length, and inter-tegular distance, were more susceptible to agrochemicals than the larger ones. For the majority of the tested species, acetamiprid was the most toxic compound. Treated bees also showed neuronal symptoms after acetamiprid exposure and locomotor alterations that varied among species and agrochemicals. Our results show how the susceptibility of bees varies between species in relation to their body size, highlighting the need for additional model species in current bee risk assessments.