{"title":"Engineered DR/NIR dual-emission carbonized polymer dots for simultaneous tracking of lipid droplets and lysosomes.","authors":"Shan Miao, Junyong Sun, Ying Li, Qiang Zhang, Hongqi Chen, Feng Gao","doi":"10.1016/j.saa.2024.125598","DOIUrl":null,"url":null,"abstract":"<p><p>Developing near-infrared fluorescent probes for simultaneous tracking of lipid droplets (LDs) and lysosomes is highly desirable for studying cell metabolism. In this work, deep-red/near-infrared dual-emission carbonized polymer dots (DN-CPDs) were prepared for ratiometric monitoring of the intracellular polarity. Detailed structural analysis revealed that the deep-red emission and near-infrared peak of DN-CPDs originate from the molecular state and surface state, respectively. The surface-state emission was derived from the intraparticle charge-transfer (ICT) effect of the donor-bridge-acceptor (D-π-A) structure of DN-CPDs. The obtained DN-CPDs exhibited excellent dual-labeling ability, large Stokes shifts, ratiometric polarity sensitivity, high selectivity, and satisfactory photostability. Moreover, with the polarity distinction between LDs and lysosomes, DN-CPDs nanoprobes were successfully used to observe the dynamic changes of the two aforementioned organelles during starvation-induced lipophagy and drug-induced lipophagy inhibition processes. This work not only provides a useful tool for LD-lysosome related studies but is also valuable for the preparation of CPDs with long wavelength emission.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"329 ","pages":"125598"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.saa.2024.125598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Developing near-infrared fluorescent probes for simultaneous tracking of lipid droplets (LDs) and lysosomes is highly desirable for studying cell metabolism. In this work, deep-red/near-infrared dual-emission carbonized polymer dots (DN-CPDs) were prepared for ratiometric monitoring of the intracellular polarity. Detailed structural analysis revealed that the deep-red emission and near-infrared peak of DN-CPDs originate from the molecular state and surface state, respectively. The surface-state emission was derived from the intraparticle charge-transfer (ICT) effect of the donor-bridge-acceptor (D-π-A) structure of DN-CPDs. The obtained DN-CPDs exhibited excellent dual-labeling ability, large Stokes shifts, ratiometric polarity sensitivity, high selectivity, and satisfactory photostability. Moreover, with the polarity distinction between LDs and lysosomes, DN-CPDs nanoprobes were successfully used to observe the dynamic changes of the two aforementioned organelles during starvation-induced lipophagy and drug-induced lipophagy inhibition processes. This work not only provides a useful tool for LD-lysosome related studies but is also valuable for the preparation of CPDs with long wavelength emission.