Development of a predictive model for postoperative major adverse cardiovascular events in elderly patients undergoing major abdominal surgery.

IF 1.6 3区 医学 Q2 SURGERY
Adilai Kurexi, Rui Yan, Tingting Yuan, Zhaenhaer Taati, Maimaiti Mijiti, Dan Li
{"title":"Development of a predictive model for postoperative major adverse cardiovascular events in elderly patients undergoing major abdominal surgery.","authors":"Adilai Kurexi, Rui Yan, Tingting Yuan, Zhaenhaer Taati, Maimaiti Mijiti, Dan Li","doi":"10.1186/s12893-024-02711-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To investigate the predictive value of a Short Physical Performance Battery (SPPB) for postoperative major adverse cardiovascular events(MACEs) in elderly patients undergoing major abdominal surgery and to develop a nomogram risk prediction model.</p><p><strong>Methods: </strong>A total of 427 elderly patients aged ≥ 65 years who underwent major abdominal surgery at our hospital between June 2023 and March 2024 were selected for the study, and 416 patients were ultimately included. The preoperative SPPB score was measured, and the patients were divided into two groups: a high SPPB group (≥ 10) and a low SPPB group (< 10). The subjects' clinical datasets and postoperative major adverse cardiovascular event (MACEs) occurrence data were recorded. LASSO regression analysis was performed to screen predictor variables and develop a nomogram risk prediction model for predicting MACEs. The area under the receiver operating characteristic (ROC) curve (AUC), calibration curve, and decision curve analysis (DCA) were used to evaluate the model's clinical efficacy.</p><p><strong>Results: </strong>The incidence of postoperative MACEs in elderly patients who underwent major abdominal surgery was 5%. LASSO regression analysis revealed that arrhythmia, creatine kinase, SPPB, anesthesia duration, age, intraoperative minimum heart rate, BMI, and coronary artery disease were significant predictors of MACEs. The nomogram risk prediction model based on SPPB and clinical indicators can better predict the occurrence of MACEs and can guide preoperative interventions and help to improve perioperative management.The decision curve indicated encouraging clinical effectiveness, the calibration curve demonstrated good agreement, and the area under the curve (AUC) was 0.852 (95% CI, 0.749-0.954).</p><p><strong>Conclusion: </strong>The nomogram risk prediction model based on SPPB and clinical indicators can better predict the occurrence of MACEs and can guide preoperative intervention and help to improve perioperative management.</p>","PeriodicalId":49229,"journal":{"name":"BMC Surgery","volume":"24 1","pages":"403"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662575/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12893-024-02711-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To investigate the predictive value of a Short Physical Performance Battery (SPPB) for postoperative major adverse cardiovascular events(MACEs) in elderly patients undergoing major abdominal surgery and to develop a nomogram risk prediction model.

Methods: A total of 427 elderly patients aged ≥ 65 years who underwent major abdominal surgery at our hospital between June 2023 and March 2024 were selected for the study, and 416 patients were ultimately included. The preoperative SPPB score was measured, and the patients were divided into two groups: a high SPPB group (≥ 10) and a low SPPB group (< 10). The subjects' clinical datasets and postoperative major adverse cardiovascular event (MACEs) occurrence data were recorded. LASSO regression analysis was performed to screen predictor variables and develop a nomogram risk prediction model for predicting MACEs. The area under the receiver operating characteristic (ROC) curve (AUC), calibration curve, and decision curve analysis (DCA) were used to evaluate the model's clinical efficacy.

Results: The incidence of postoperative MACEs in elderly patients who underwent major abdominal surgery was 5%. LASSO regression analysis revealed that arrhythmia, creatine kinase, SPPB, anesthesia duration, age, intraoperative minimum heart rate, BMI, and coronary artery disease were significant predictors of MACEs. The nomogram risk prediction model based on SPPB and clinical indicators can better predict the occurrence of MACEs and can guide preoperative interventions and help to improve perioperative management.The decision curve indicated encouraging clinical effectiveness, the calibration curve demonstrated good agreement, and the area under the curve (AUC) was 0.852 (95% CI, 0.749-0.954).

Conclusion: The nomogram risk prediction model based on SPPB and clinical indicators can better predict the occurrence of MACEs and can guide preoperative intervention and help to improve perioperative management.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Surgery
BMC Surgery SURGERY-
CiteScore
2.90
自引率
5.30%
发文量
391
审稿时长
58 days
期刊介绍: BMC Surgery is an open access, peer-reviewed journal that considers articles on surgical research, training, and practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信