Optimal parameter setting and evaluation for ultraviolet-assisted direct ink writing bioprinting of nHA/PEGDA scaffold.

Yumeng Li, Jiaqi Ma, Jing Wang, Yanlei Kong, Feng Wang, Pengfei Zhang, Fan Yawei
{"title":"Optimal parameter setting and evaluation for ultraviolet-assisted direct ink writing bioprinting of nHA/PEGDA scaffold.","authors":"Yumeng Li, Jiaqi Ma, Jing Wang, Yanlei Kong, Feng Wang, Pengfei Zhang, Fan Yawei","doi":"10.1088/1748-605X/ada241","DOIUrl":null,"url":null,"abstract":"<p><p>Ultraviolet-assisted Direct Ink Writing(UV-DIW), an extrusion-based additive manufacturing technology, has emerged as a prominent 3D printing technique and is currently an important topic in bone tissue engineering research. This study focused on the printability of double-network (DN) bioink (Nano-hydroxyapatite/Polyethylene glycol diacrylate(nHA/PEGDA)). Next, we search for the optimal UV-DIW printing parameters for the scaffold formed by nHA-PEGDA. In the end, we developed a scaffold that has outstanding structural integrity and can repair bone defects. Achieving high-quality UV-DIW printing can be challenging due to a variety of factors (slurry solid content, rheology, printing conditions, etc.).At present, there are limited reports about precise parameter configurations for UV-DIW printing. We optimised the solid composition of the slurry by varying the quantities of nHA and PEGDA, establishing the maximum solid content (40 wt%) permissible for scaffold shaping. Consequently, we examined the influence of several factors (nozzle diameter, air pressure, and printing rate) on the surface morphology of the scaffolds and determined the ideal conditions to attain scaffolds with superior printing accuracy. The findings demonstrate excellent controllability, repeatability, and precision of the entire printing process. Finally, we evaluated the scaffolds that most effectively fulfilled the requirements for bone regeneration by examining their surface morphology and mechanical characteristics. The experimental findings indicate that nHA-PEGDA scaffolds fulfill the compressive strength requirements for bone tissue and possess promising applications in bone regeneration. This study demonstrates that the nHA-PEGDA bioink possesses significant potential as a scaffold material for bone tissue regeneration, exhibiting exceptional shape integrity and mechanical capabilities. The study found the optimal parameters for bio-3D printers and gave UV-DIW an exact data reference for making the nHA-PEGDA scaffold. In addition, it is a useful guide for 3D printing biomaterial scaffolds.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ada241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ultraviolet-assisted Direct Ink Writing(UV-DIW), an extrusion-based additive manufacturing technology, has emerged as a prominent 3D printing technique and is currently an important topic in bone tissue engineering research. This study focused on the printability of double-network (DN) bioink (Nano-hydroxyapatite/Polyethylene glycol diacrylate(nHA/PEGDA)). Next, we search for the optimal UV-DIW printing parameters for the scaffold formed by nHA-PEGDA. In the end, we developed a scaffold that has outstanding structural integrity and can repair bone defects. Achieving high-quality UV-DIW printing can be challenging due to a variety of factors (slurry solid content, rheology, printing conditions, etc.).At present, there are limited reports about precise parameter configurations for UV-DIW printing. We optimised the solid composition of the slurry by varying the quantities of nHA and PEGDA, establishing the maximum solid content (40 wt%) permissible for scaffold shaping. Consequently, we examined the influence of several factors (nozzle diameter, air pressure, and printing rate) on the surface morphology of the scaffolds and determined the ideal conditions to attain scaffolds with superior printing accuracy. The findings demonstrate excellent controllability, repeatability, and precision of the entire printing process. Finally, we evaluated the scaffolds that most effectively fulfilled the requirements for bone regeneration by examining their surface morphology and mechanical characteristics. The experimental findings indicate that nHA-PEGDA scaffolds fulfill the compressive strength requirements for bone tissue and possess promising applications in bone regeneration. This study demonstrates that the nHA-PEGDA bioink possesses significant potential as a scaffold material for bone tissue regeneration, exhibiting exceptional shape integrity and mechanical capabilities. The study found the optimal parameters for bio-3D printers and gave UV-DIW an exact data reference for making the nHA-PEGDA scaffold. In addition, it is a useful guide for 3D printing biomaterial scaffolds.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信