Cold temperature delays ovarian development of largemouth bass by inhibiting sex hormone release, angiogenesis, apoptosis and autophagy during out-of-season reproduction.

IF 2.1 3区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Kuo He, Zhihong Li, Haoxiao Yan, Longlong Shi, Hangyu Yang, Qiao Liu, Kaige Song, Yifan Hu, Bo Wang, Song Yang, Liulan Zhao
{"title":"Cold temperature delays ovarian development of largemouth bass by inhibiting sex hormone release, angiogenesis, apoptosis and autophagy during out-of-season reproduction.","authors":"Kuo He, Zhihong Li, Haoxiao Yan, Longlong Shi, Hangyu Yang, Qiao Liu, Kaige Song, Yifan Hu, Bo Wang, Song Yang, Liulan Zhao","doi":"10.1016/j.cbpa.2024.111795","DOIUrl":null,"url":null,"abstract":"<p><p>Cold temperature is an effective method of achieving out-of-season reproduction and obtaining fry in the autumn. This study investigated the effects of low-temperature (12-16 °C) environment on the out-of-season reproduction of largemouth bass, particularly the delayed effects on ovarian development. During the period of delayed out-of-season reproduction, there was a significant reduction in the levels of serum sex hormones (FSH and LH) and their respective receptors (FSHR and LHCGR). Exposure to cold temperature significantly reduced the expression of gonadal development genes (IGF-1, GDF9, and CDC2) (P<0.05) and diminished the vascular network on the ovarian membrane, as confirmed by angiogenesis-related analyses. In lipid metabolism, AMH mRNA levels decreased overall, while HSD3B, FABP1, APOA1, and APOC2 initially increased before declining. Serum VTG levels decreased gradually with a slight increase post-spawning. These findings suggested that cold temperature delay ovarian development in largemouth bass by impacting sex hormone synthesis, angiogenesis, and lipid deposition. This insight enhances our understanding of out-of-season reproduction and guides the development of more effective reproductive techniques.</p>","PeriodicalId":55237,"journal":{"name":"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology","volume":" ","pages":"111795"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cbpa.2024.111795","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cold temperature is an effective method of achieving out-of-season reproduction and obtaining fry in the autumn. This study investigated the effects of low-temperature (12-16 °C) environment on the out-of-season reproduction of largemouth bass, particularly the delayed effects on ovarian development. During the period of delayed out-of-season reproduction, there was a significant reduction in the levels of serum sex hormones (FSH and LH) and their respective receptors (FSHR and LHCGR). Exposure to cold temperature significantly reduced the expression of gonadal development genes (IGF-1, GDF9, and CDC2) (P<0.05) and diminished the vascular network on the ovarian membrane, as confirmed by angiogenesis-related analyses. In lipid metabolism, AMH mRNA levels decreased overall, while HSD3B, FABP1, APOA1, and APOC2 initially increased before declining. Serum VTG levels decreased gradually with a slight increase post-spawning. These findings suggested that cold temperature delay ovarian development in largemouth bass by impacting sex hormone synthesis, angiogenesis, and lipid deposition. This insight enhances our understanding of out-of-season reproduction and guides the development of more effective reproductive techniques.

低温通过抑制大口黑鲈越季繁殖过程中性激素的释放、血管生成、细胞凋亡和自噬来延缓卵巢发育。
低温是实现越季繁殖和在秋季获得鱼苗的有效方法。本研究探讨低温(12-16 °C)环境对大口黑鲈越季繁殖的影响,特别是对卵巢发育的延迟影响。在延迟越季繁殖期间,血清性激素(FSH和LH)及其受体(FSHR和LHCGR)水平显著降低。暴露于低温显著降低了性腺发育基因(IGF-1、GDF9和CDC2)的表达(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
4.30%
发文量
155
审稿时长
3 months
期刊介绍: Part A: Molecular & Integrative Physiology of Comparative Biochemistry and Physiology. This journal covers molecular, cellular, integrative, and ecological physiology. Topics include bioenergetics, circulation, development, excretion, ion regulation, endocrinology, neurobiology, nutrition, respiration, and thermal biology. Study on regulatory mechanisms at any level of organization such as signal transduction and cellular interaction and control of behavior are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信