Base-catalyzed hydrolysis mechanism of polychlorinated dibenzo-p-dioxins based on quantitative structure-activity relationship.

Kun Xie, Haiqin Zhang, Zhijian Wang
{"title":"Base-catalyzed hydrolysis mechanism of polychlorinated dibenzo-p-dioxins based on quantitative structure-activity relationship.","authors":"Kun Xie, Haiqin Zhang, Zhijian Wang","doi":"10.1016/j.chemosphere.2024.143938","DOIUrl":null,"url":null,"abstract":"<p><p>Polychlorinated dibenzo-p-dioxins (PCDDs) are persistent organic pollutants that pose considerable threats to ecological and human health owing to their high toxicity potential. Understanding the mechanisms for underlying the base-catalyzed hydrolysis of PCDDs in aquatic environments is essential for assessing their environmental behaviour and ecological risks. Herein, we combined quantitative structure-activity relationship (QSAR) models with density functional theory calculations to analyse the base-catalyzed hydrolysis mechanisms of PCDDs. Among the four developed QSAR models, the single-parameter QSAR model based on the lowest unoccupied molecular orbital energy (E<sub>LUMO</sub>) demonstrated the best performance, achieving a coefficient of determination of 0.89 and a root mean square error of 0.49, indicating superior overall performance. Results indicate that the second-order rate constants for base-catalyzed hydrolysis (k<sub>OH</sub>) of PCDDs are primarily influenced by E<sub>LUMO</sub>, molecular polarizability (α), molecular volume (V<sub>m</sub>), degree of chlorination (N<sub>Cl</sub>), and chlorine position. Specifically, increases in the α and V<sub>m</sub> values of PCDDs lead to higher logk<sub>OH</sub> values, while an increase in the E<sub>LUMO</sub> value results in a lower logk<sub>OH</sub> value. This study elucidates the relationship between the molecular structure and the rate of base-catalyzed hydrolysis of PCDDs for the first time, providing valuable insight into their environmental fate. Furthermore, this research offers a novel theoretical perspective on the base-catalyzed hydrolysis of PCDDs, which will aid in regulatory assessments and risk management.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143938"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chemosphere.2024.143938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Polychlorinated dibenzo-p-dioxins (PCDDs) are persistent organic pollutants that pose considerable threats to ecological and human health owing to their high toxicity potential. Understanding the mechanisms for underlying the base-catalyzed hydrolysis of PCDDs in aquatic environments is essential for assessing their environmental behaviour and ecological risks. Herein, we combined quantitative structure-activity relationship (QSAR) models with density functional theory calculations to analyse the base-catalyzed hydrolysis mechanisms of PCDDs. Among the four developed QSAR models, the single-parameter QSAR model based on the lowest unoccupied molecular orbital energy (ELUMO) demonstrated the best performance, achieving a coefficient of determination of 0.89 and a root mean square error of 0.49, indicating superior overall performance. Results indicate that the second-order rate constants for base-catalyzed hydrolysis (kOH) of PCDDs are primarily influenced by ELUMO, molecular polarizability (α), molecular volume (Vm), degree of chlorination (NCl), and chlorine position. Specifically, increases in the α and Vm values of PCDDs lead to higher logkOH values, while an increase in the ELUMO value results in a lower logkOH value. This study elucidates the relationship between the molecular structure and the rate of base-catalyzed hydrolysis of PCDDs for the first time, providing valuable insight into their environmental fate. Furthermore, this research offers a novel theoretical perspective on the base-catalyzed hydrolysis of PCDDs, which will aid in regulatory assessments and risk management.

基于定量构效关系的多氯二苯并对二恶英碱催化水解机理研究。
多氯二苯并对二恶英是一种持久性有机污染物,由于其潜在的高毒性,对生态和人类健康构成相当大的威胁。了解多氯联苯在水生环境中碱催化水解的机制对于评估其环境行为和生态风险至关重要。本文将定量构效关系(QSAR)模型与密度泛函理论计算相结合,分析了pcdd的碱催化水解机理。其中,基于最低未占据分子轨道能量(ELUMO)的单参数QSAR模型性能最佳,决定系数为0.89,均方根误差为0.49,综合性能较好。结果表明,碱基催化水解pcdd的二级速率常数主要受ELUMO、分子极化率(α)、分子体积(Vm)、氯化度(NCl)和氯位置的影响。具体来说,pcdd的α值和Vm值的增加导致logkOH值升高,而ELUMO值的增加导致logkOH值降低。该研究首次阐明了pcdd的分子结构与碱基催化水解速率之间的关系,为其环境命运提供了有价值的见解。此外,该研究为碱基催化水解pcdd提供了新的理论视角,有助于监管评估和风险管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信