Katherine H. Griffin , Isabel S. Sagheb , Thomas P. Coonan , Fernando A. Fierro , R. Lor Randall , J. Kent Leach
{"title":"Macrophage and osteosarcoma cell crosstalk is dependent on oxygen tension and 3D culture","authors":"Katherine H. Griffin , Isabel S. Sagheb , Thomas P. Coonan , Fernando A. Fierro , R. Lor Randall , J. Kent Leach","doi":"10.1016/j.bioadv.2024.214154","DOIUrl":null,"url":null,"abstract":"<div><div>Osteosarcoma (OS), the most common form of primary bone cancer in young adults, has had no improvements in clinical outcomes in 50 years. This highlights a critical need to advance mechanistic understanding of OS to further therapeutic discovery, which will only be possible with accurate models of the disease. Compared to traditional monolayer studies and preclinical models, <em>in vitro</em> models that better replicate the three-dimensional (3D) bone marrow microenvironment will facilitate methodical investigations of the events and factors that drive OS progression. Herein, we use fibrin-alginate interpenetrating network (FA IPN) hydrogels to model the hematological bone marrow environment. We interrogated the effects of oxygen tension, 3D culture, and macrophage phenotype on OS behavior and specifically examine the immunomodulatory crosstalk between OS and macrophages. We observe that OS is more sensitive to oxygen tension when cultured in 3D. Specifically, both highly and less metastatic OS exhibit decreased changes in DNA content over time in 3D, but then demonstrate diverging behaviors in heterotypic culture with macrophages. OS response to macrophages differs as a function of metastatic potential, where highly metastatic OS shows increased immunosuppression that varies with oxygen tension but relies on direct coculture conditions. To our knowledge, this is among the first work to report the effects of 3D culture on the interplay between OS and macrophages in a coculture microenvironment. Together, these data introduce FA IPNs as a promising platform for cancer research and emphasize the importance of novel models for the mechanistic study of OS.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"169 ","pages":"Article 214154"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science & Engineering C-Materials for Biological Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772950824003972","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Osteosarcoma (OS), the most common form of primary bone cancer in young adults, has had no improvements in clinical outcomes in 50 years. This highlights a critical need to advance mechanistic understanding of OS to further therapeutic discovery, which will only be possible with accurate models of the disease. Compared to traditional monolayer studies and preclinical models, in vitro models that better replicate the three-dimensional (3D) bone marrow microenvironment will facilitate methodical investigations of the events and factors that drive OS progression. Herein, we use fibrin-alginate interpenetrating network (FA IPN) hydrogels to model the hematological bone marrow environment. We interrogated the effects of oxygen tension, 3D culture, and macrophage phenotype on OS behavior and specifically examine the immunomodulatory crosstalk between OS and macrophages. We observe that OS is more sensitive to oxygen tension when cultured in 3D. Specifically, both highly and less metastatic OS exhibit decreased changes in DNA content over time in 3D, but then demonstrate diverging behaviors in heterotypic culture with macrophages. OS response to macrophages differs as a function of metastatic potential, where highly metastatic OS shows increased immunosuppression that varies with oxygen tension but relies on direct coculture conditions. To our knowledge, this is among the first work to report the effects of 3D culture on the interplay between OS and macrophages in a coculture microenvironment. Together, these data introduce FA IPNs as a promising platform for cancer research and emphasize the importance of novel models for the mechanistic study of OS.
期刊介绍:
Biomaterials Advances, previously known as Materials Science and Engineering: C-Materials for Biological Applications (P-ISSN: 0928-4931, E-ISSN: 1873-0191). Includes topics at the interface of the biomedical sciences and materials engineering. These topics include:
• Bioinspired and biomimetic materials for medical applications
• Materials of biological origin for medical applications
• Materials for "active" medical applications
• Self-assembling and self-healing materials for medical applications
• "Smart" (i.e., stimulus-response) materials for medical applications
• Ceramic, metallic, polymeric, and composite materials for medical applications
• Materials for in vivo sensing
• Materials for in vivo imaging
• Materials for delivery of pharmacologic agents and vaccines
• Novel approaches for characterizing and modeling materials for medical applications
Manuscripts on biological topics without a materials science component, or manuscripts on materials science without biological applications, will not be considered for publication in Materials Science and Engineering C. New submissions are first assessed for language, scope and originality (plagiarism check) and can be desk rejected before review if they need English language improvements, are out of scope or present excessive duplication with published sources.
Biomaterials Advances sits within Elsevier''s biomaterials science portfolio alongside Biomaterials, Materials Today Bio and Biomaterials and Biosystems. As part of the broader Materials Today family, Biomaterials Advances offers authors rigorous peer review, rapid decisions, and high visibility. We look forward to receiving your submissions!