VvCCD7, a novel strigolactone synthesis gene in grapevine (Vitis vinifera L.), increases sensitivity to drought and low-phosphorus stress in transgenic Arabidopsis.
{"title":"VvCCD7, a novel strigolactone synthesis gene in grapevine (Vitis vinifera L.), increases sensitivity to drought and low-phosphorus stress in transgenic Arabidopsis.","authors":"Wan-Ni Wang, Zi-Lan Jin, Xin-Yue Zhao, Meng-Bo Zhang, Hong-Bing Tan, Yu-Lin Fang, Yan-Lun Ju","doi":"10.1016/j.plaphy.2024.109410","DOIUrl":null,"url":null,"abstract":"<p><p>As a new plant hormone, strigolactone not only promotes leaf senescence, inhibits plant branching and regulates root structure, but also plays an important role in abiotic stress resistance. However, little is known about the function of VvCCD7 under abiotic stress, a key gene for the synthesis of strigolactone in grapevine. In this study, VvCCD7 gene was cloned from grape leaves of 'Cabernet Sauvignon'. In Arabidopsis, the function of VvCCD7 was verified under drought and low phosphorus stress. The open reading frame of VvCCD7 is 1833 bp in length, encoding 610 amino acids, and the expression level was the highest in the old leaves. Under drought stress, the leaves of wild-type Arabidopsis yellowed and withered, the leaves of overexpressed Arabidopsis shrank slightly, and the peroxidase activity and proline content were significantly higher than those of wild-type Arabidopsis. The expression of AtBzip17 and AtVOZ2 in overexpressed Arabidopsis was significantly higher than that in the wild type, and the expression of AtCOR15A was significantly lower than that in the wild type. Under low phosphorus stress, the growth of wild-type Arabidopsis was slowed down and its root elongation was inhibited. The growth of overexpressed Arabidopsis was healthy and its root elongation was normal. In conclusion, VvCCD7 gene enhanced the tolerance of Arabidopsis to drought and low phosphorus stress, which laid a foundation for further study on the abiotic stress-relieving mechanism of strigolactone.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"219 ","pages":"109410"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2024.109410","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
As a new plant hormone, strigolactone not only promotes leaf senescence, inhibits plant branching and regulates root structure, but also plays an important role in abiotic stress resistance. However, little is known about the function of VvCCD7 under abiotic stress, a key gene for the synthesis of strigolactone in grapevine. In this study, VvCCD7 gene was cloned from grape leaves of 'Cabernet Sauvignon'. In Arabidopsis, the function of VvCCD7 was verified under drought and low phosphorus stress. The open reading frame of VvCCD7 is 1833 bp in length, encoding 610 amino acids, and the expression level was the highest in the old leaves. Under drought stress, the leaves of wild-type Arabidopsis yellowed and withered, the leaves of overexpressed Arabidopsis shrank slightly, and the peroxidase activity and proline content were significantly higher than those of wild-type Arabidopsis. The expression of AtBzip17 and AtVOZ2 in overexpressed Arabidopsis was significantly higher than that in the wild type, and the expression of AtCOR15A was significantly lower than that in the wild type. Under low phosphorus stress, the growth of wild-type Arabidopsis was slowed down and its root elongation was inhibited. The growth of overexpressed Arabidopsis was healthy and its root elongation was normal. In conclusion, VvCCD7 gene enhanced the tolerance of Arabidopsis to drought and low phosphorus stress, which laid a foundation for further study on the abiotic stress-relieving mechanism of strigolactone.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.