Curcumin administration mitigates periodontitis-induced tissue damage in hypercholesterolemic rats: a natural preventive approach.

IF 1.9 3区 医学 Q2 DENTISTRY, ORAL SURGERY & MEDICINE
María Eugenia Antona, Cecilia Ramos, Ricardo Orzuza, Germán Esteban González, Paula Mariela González, Joaquín Cabrera, Andrea Gloria Ferreira Monteiro, Valeria Zago, Silvia María Friedman, Tammy Steimetz, Elisa Vanesa Macri
{"title":"Curcumin administration mitigates periodontitis-induced tissue damage in hypercholesterolemic rats: a natural preventive approach.","authors":"María Eugenia Antona, Cecilia Ramos, Ricardo Orzuza, Germán Esteban González, Paula Mariela González, Joaquín Cabrera, Andrea Gloria Ferreira Monteiro, Valeria Zago, Silvia María Friedman, Tammy Steimetz, Elisa Vanesa Macri","doi":"10.1007/s10266-024-01042-9","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the preventive effect of curcumin (CUR) on tooth-supporting structures in hypercholesterolemic (HC) rats with periodontitis (P). Wistar rats (8 weeks old) (n = 30) were assigned to six groups based on dietary intake, CUR-piperine combination treatment and P induction. P was induced in four groups using a ligature model. Serum lipid profiles, oxidative stress parameters, radiographic, histological and histomorphometric analyses were performed. HC rats showed elevated serum cholesterol levels (p < 0.001). Moreover, topical administration of CUR did not regulate hypercholesterolemia in this model. The HC diet increased oxidative stress in gingival tissue, exacerbated by P, whereas CUR attenuated reactive species generation (p < 0.001) and reduced catalase (CAT) activity, possibly due to its antioxidant properties. Histological analysis revealed extensive erosive surfaces and osteoclast presence in the P groups, with the HC + P group showing the highest rate of bone resorption. The CUR-treated groups showed less bone resorption and more bone formation, indicating a protective effect. Histomorphometric studies showed a significant increase in bone volume in the CUR groups compared to the P groups (p < 0.001). CUR prevented bone resorption induced by P and HC diet, with larger osteoblastic surfaces and fewer osteoclasts, suggesting inhibition of bone resorption. CUR also prevented collagen fiber destruction caused by the HC diet. Overall, the study suggests a potential therapeutic role for CUR in mitigating periodontal tissue damage associated with hypercholesterolemia and P, due to its antioxidant and anti-inflammatory properties. Further research would be needed to validate its clinical efficacy as an adjunctive treatment for P.</p>","PeriodicalId":19390,"journal":{"name":"Odontology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Odontology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10266-024-01042-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the preventive effect of curcumin (CUR) on tooth-supporting structures in hypercholesterolemic (HC) rats with periodontitis (P). Wistar rats (8 weeks old) (n = 30) were assigned to six groups based on dietary intake, CUR-piperine combination treatment and P induction. P was induced in four groups using a ligature model. Serum lipid profiles, oxidative stress parameters, radiographic, histological and histomorphometric analyses were performed. HC rats showed elevated serum cholesterol levels (p < 0.001). Moreover, topical administration of CUR did not regulate hypercholesterolemia in this model. The HC diet increased oxidative stress in gingival tissue, exacerbated by P, whereas CUR attenuated reactive species generation (p < 0.001) and reduced catalase (CAT) activity, possibly due to its antioxidant properties. Histological analysis revealed extensive erosive surfaces and osteoclast presence in the P groups, with the HC + P group showing the highest rate of bone resorption. The CUR-treated groups showed less bone resorption and more bone formation, indicating a protective effect. Histomorphometric studies showed a significant increase in bone volume in the CUR groups compared to the P groups (p < 0.001). CUR prevented bone resorption induced by P and HC diet, with larger osteoblastic surfaces and fewer osteoclasts, suggesting inhibition of bone resorption. CUR also prevented collagen fiber destruction caused by the HC diet. Overall, the study suggests a potential therapeutic role for CUR in mitigating periodontal tissue damage associated with hypercholesterolemia and P, due to its antioxidant and anti-inflammatory properties. Further research would be needed to validate its clinical efficacy as an adjunctive treatment for P.

姜黄素可减轻高胆固醇血症大鼠牙周炎引起的组织损伤:一种天然的预防方法。
本研究探讨姜黄素(curcumin, CUR)对牙周炎(P)高胆固醇血症(HC)大鼠牙齿支撑结构的预防作用。8周龄Wistar大鼠(n = 30)根据饮食摄入、姜黄素-胡椒碱联合治疗和P诱导分为6组。四组采用结扎模型诱导P。进行了血脂、氧化应激参数、影像学、组织学和组织形态学分析。HC大鼠血清胆固醇水平升高(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Odontology
Odontology 医学-牙科与口腔外科
CiteScore
5.30
自引率
4.00%
发文量
91
审稿时长
>12 weeks
期刊介绍: The Journal Odontology covers all disciplines involved in the fields of dentistry and craniofacial research, including molecular studies related to oral health and disease. Peer-reviewed articles cover topics ranging from research on human dental pulp, to comparisons of analgesics in surgery, to analysis of biofilm properties of dental plaque.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信