Human neural stem cells directly programmed from peripheral blood show functional integration into the adult mouse brain.

IF 7.1 2区 医学 Q1 CELL & TISSUE ENGINEERING
Lea Jessica Berg, Chung Ku Lee, Hideaki Matsumura, Anke Leinhaas, Rachel Konang, Ali H Shaib, Pedro Royero, Julia Schlee, Chao Sheng, Heinz Beck, Martin Karl Schwarz, Nils Brose, Jeong Seop Rhee, Oliver Brüstle
{"title":"Human neural stem cells directly programmed from peripheral blood show functional integration into the adult mouse brain.","authors":"Lea Jessica Berg, Chung Ku Lee, Hideaki Matsumura, Anke Leinhaas, Rachel Konang, Ali H Shaib, Pedro Royero, Julia Schlee, Chao Sheng, Heinz Beck, Martin Karl Schwarz, Nils Brose, Jeong Seop Rhee, Oliver Brüstle","doi":"10.1186/s13287-024-04110-7","DOIUrl":null,"url":null,"abstract":"<p><p>Transplantation of induced pluripotent stem cell-derived neural cells represents a promising strategy for treating neurodegenerative diseases. However, reprogramming of somatic cells and their subsequent neural differentiation is complex and time-consuming, thereby impeding autologous applications. Recently, direct transcription factor-based conversion of blood cells into induced neural stem cells (iNSCs) has emerged as a potential alternative. However, little is known about the functionality of iNSC-derived neurons upon in vivo transplantation. Here, we grafted human iNSCs derived from adult peripheral blood by temporary overexpression of the transcription factors SOX2 and cMYC into the hippocampus or striatum of adult unlesioned immunodeficient Rag2<sup>tm1Fwa</sup>Il2rg<sup>tm1Wjl</sup> mice of both sexes. Engrafted cells gave rise to stable transplants composed of mature neurons displaying extensive neurite outgrowth and dendritic spine formation. Functional analyses of acute slices using patch clamp recordings revealed that already after 12 weeks of in vivo maturation, most of iNSC-derived cells possess unique properties exclusive to neurons and exhibit voltage-dependent ion channel currents as well as action potential firing. Moreover, the formation of spontaneous inhibitory and excitatory postsynaptic currents, along with Rabies virus-based retrograde monosynaptic tracing data, strongly supports the structural and functional integration of graft-derived neurons. Taken together, our data demonstrate that iNSCs directly derived from peripheral blood cells have the inherent capacity to achieve full functional maturation in vivo, qualifying them as an alternative potential donor source for restorative applications and deserving further investigation.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"15 1","pages":"488"},"PeriodicalIF":7.1000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662720/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13287-024-04110-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Transplantation of induced pluripotent stem cell-derived neural cells represents a promising strategy for treating neurodegenerative diseases. However, reprogramming of somatic cells and their subsequent neural differentiation is complex and time-consuming, thereby impeding autologous applications. Recently, direct transcription factor-based conversion of blood cells into induced neural stem cells (iNSCs) has emerged as a potential alternative. However, little is known about the functionality of iNSC-derived neurons upon in vivo transplantation. Here, we grafted human iNSCs derived from adult peripheral blood by temporary overexpression of the transcription factors SOX2 and cMYC into the hippocampus or striatum of adult unlesioned immunodeficient Rag2tm1FwaIl2rgtm1Wjl mice of both sexes. Engrafted cells gave rise to stable transplants composed of mature neurons displaying extensive neurite outgrowth and dendritic spine formation. Functional analyses of acute slices using patch clamp recordings revealed that already after 12 weeks of in vivo maturation, most of iNSC-derived cells possess unique properties exclusive to neurons and exhibit voltage-dependent ion channel currents as well as action potential firing. Moreover, the formation of spontaneous inhibitory and excitatory postsynaptic currents, along with Rabies virus-based retrograde monosynaptic tracing data, strongly supports the structural and functional integration of graft-derived neurons. Taken together, our data demonstrate that iNSCs directly derived from peripheral blood cells have the inherent capacity to achieve full functional maturation in vivo, qualifying them as an alternative potential donor source for restorative applications and deserving further investigation.

直接从外周血中提取的人类神经干细胞显示出与成年小鼠大脑的功能整合。
诱导多能干细胞来源的神经细胞移植是治疗神经退行性疾病的一种很有前途的策略。然而,体细胞的重编程及其随后的神经分化是复杂和耗时的,因此阻碍了自体应用。最近,基于直接转录因子的血细胞转化为诱导神经干细胞(iNSCs)已成为一种潜在的替代方法。然而,关于insc来源的神经元在体内移植后的功能知之甚少。在这里,我们通过暂时过表达转录因子SOX2和cMYC,将来自成人外周血的人iNSCs移植到未受损的成年免疫缺陷小鼠Rag2tm1FwaIl2rgtm1Wjl的海马或纹状体中。移植细胞产生稳定的移植物,由成熟神经元组成,显示广泛的神经突生长和树突棘形成。使用膜片钳记录急性切片的功能分析显示,在体内成熟12周后,大多数insc来源的细胞具有神经元独有的特性,并表现出电压依赖性离子通道电流和动作电位放电。此外,自发抑制性和兴奋性突触后电流的形成,以及基于狂犬病毒的逆行单突触追踪数据,有力地支持了移植物来源神经元的结构和功能整合。综上所述,我们的数据表明,直接来源于外周血细胞的iNSCs具有在体内实现完全功能成熟的内在能力,使其成为修复应用的替代潜在供体来源,值得进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stem Cell Research & Therapy
Stem Cell Research & Therapy CELL BIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
13.20
自引率
8.00%
发文量
525
审稿时长
1 months
期刊介绍: Stem Cell Research & Therapy serves as a leading platform for translational research in stem cell therapies. This international, peer-reviewed journal publishes high-quality open-access research articles, with a focus on basic, translational, and clinical research in stem cell therapeutics and regenerative therapies. Coverage includes animal models and clinical trials. Additionally, the journal offers reviews, viewpoints, commentaries, and reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信